1887

Abstract

A Gram-staining-negative, pleomorphic, aerobic, halophilic archaeon, designated strain 294-194-5, was isolated in Japan from commercial solar salt imported from the Philippines. Colonies of strain 294-194-5 were translucent and red. Strain 294-194-5 was able to grow at 20–50 °C (optimum, 37–45 °C), with 14–30 % (w/v) NaCl (optimum, 18 %), and at pH 6.5–8.5 (optimum, pH 8.0). MgCl was not required for growth. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 294-194-5 was most closely related to YSM-123 (96.8–97.1 % sequence similarities). The major polar lipids of the novel strain were the CC and CC derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester and the same glycolipids (disulfated diglycosyl diether and one unidentified glycolipid) as detected in YSM-123. The DNA GC content of strain 294-194-5 was 63.0 mol%. The DNA–DNA relatedness values between the novel strain and YSM-123were 46.5 % and 48.5 % (reciprocal). Based on these data, strain 294-194-5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 294-194-5 ( = JCM 16593 = CECT 7630).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042549-0
2013-03-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/920.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042549-0&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F.. ( 1989;). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171:, 4987–4991.[PubMed]
    [Google Scholar]
  2. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  6. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. ( 2001;). Order I. Halobacteriales Grant and Larsen 1989b, 495VP (effective publication: Grant and Larsen 1989a, 2216). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 294–299. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  7. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  8. Kates M.. ( 1993;). Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. . Experientia 49:, 1027–1036. [CrossRef][PubMed]
    [Google Scholar]
  9. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  10. Matsubara T., Iida-Tanaka N., Kamekura M., Moldoveanu N., Ishizuka I., Onishi H., Hayashi A., Kates M.. ( 1994;). Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: a novel bis-sulfated glycolipid. . Biochim Biophys Acta 1214:, 97–108. [CrossRef][PubMed]
    [Google Scholar]
  11. Miyazaki S., Sugawara H., Gojobori T., Tateno Y.. ( 2003;). DNA Data Bank of Japan (DDBJ) in XML. . Nucleic Acids Res 31:, 13–16. [CrossRef][PubMed]
    [Google Scholar]
  12. Nagaoka S., Minegishi H., Echigo A., Usami R.. ( 2010;). Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. . Int J Syst Evol Microbiol 60:, 2828–2831. [CrossRef][PubMed]
    [Google Scholar]
  13. Oren A.. ( 2012;). Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. . Int J Syst Evol Microbiol 62:, 263–271. [CrossRef][PubMed]
    [Google Scholar]
  14. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  15. Pearson W. R., Lipman D. J.. ( 1988;). Improved tools for biological sequence comparison. . Proc Natl Acad Sci U S A 85:, 2444–2448. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Shimane Y., Hatada Y., Minegishi H., Mizuki T., Echigo A., Miyazaki M., Ohta Y., Usami R., Grant W. D., Horikoshi K.. ( 2010;). Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. . Int J Syst Evol Microbiol 60:, 2529–2534. [CrossRef][PubMed]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  20. Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef][PubMed]
    [Google Scholar]
  21. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042549-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042549-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error