1887

Abstract

A light-yellow-pigmented bacterial strain designated JS43 was isolated from a freshwater spring in Taiwan and was characterized using a polyphasic taxonomic approach. Cells of strain JS43 were Gram-negative-staining, facultatively anaerobic, rod-shaped, non-motile and non-spore-forming. Growth occurred at 10–30 °C (optimum, 25 °C), at pH 7.0–10.0 (optimum, pH 7.0–8.0) and with 0–0.5 % (w/v) NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain JS43 was a member of the family of the class . Sequence similarities to type strains of the genera and were between 94.6 and 98.1 %. The highest sequence similarity was found with DSM 3857. Strain JS43 contained Cω7 as the predominant fatty acid (74.4 %). The major isoprenoid quinone was Q-10 and the DNA G+C content was 69.3 mol%. The polar lipid profile consisted of a mixture of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two uncharacterized aminolipids and three uncharacterized phospholipids. The DNA–DNA relatedness values of strain JS43 with respect to the phylogenetically related DSM 3857, A1-9 and DCA-1 were less than 70 %. The taxonomic relationship between members of the genera and was clarified by means of a direct experimental comparison. Based on phylogenetic, chemotaxonomic and phenotypic data, we propose that all species currently classified in the genus should be transferred to the genus . The following new combinations are proposed: is reclassified as comb. nov. (type strain, AST4 = DSM 15620 = JCM 11959 = NBRC 100046), as comb. nov. (type strain, JA139 = CCUG 53722 = DSM 18774 = JCM 14338), as nom. nov. (type strain, A1-9 = CGMCC 1.7029 = NBRC 104254), as comb. nov. (type strain, DCA-1 = CGMCC 1.7745 = DSM 21823) and as comb. nov. (type strain, Y12 = CCTCC AB 2010218 = KCTC 23298). Emended descriptions of the genus and of are also presented. Strain JS43 could be distinguished from recognized species of the genera and . It is suggested, on the basis of genotypic and phenotypic characteristics, that strain JS43 ( = BCRC 80082 = LMG 25376) represents a novel species for which the name is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042051-0
2013-02-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/470.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042051-0&mimeType=html&fmt=ahah

References

  1. Anil Kumar P., Srinivas T. N. R., Sasikala Ch., Ramana ChV.. ( 2007;). Rhodobacter changlensis sp. nov., a psychrotolerant, phototrophic alphaproteobacterium from the Himalayas of India. . Int J Syst Evol Microbiol 57:, 2568–2571. [CrossRef][PubMed]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47:, 249–251. [CrossRef][PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  4. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. ( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  6. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donnell A. G... England:: John Wiley & Sons Ltd;.
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein, J. (1993). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  13. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  14. Liu Y., Xu C. J., Jiang J. T., Liu Y. H., Song X. F., Li H., Liu Z. P.. ( 2010;). Catellibacterium aquatile sp. nov., isolated from fresh water, and emended description of the genus Catellibacterium Tanaka et al. 2004. . Int J Syst Evol Microbiol 60:, 2027–2031. [CrossRef][PubMed]
    [Google Scholar]
  15. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M.. ( 2001;). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29:, 173–174. [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Nokhal T. H., Schlegel H. G.. ( 1983;). Taxonomic study of Paracoccus denitrificans. . Int J Syst Bacteriol 33:, 26–37. [CrossRef]
    [Google Scholar]
  18. Pfennig N., Trüper H. G.. ( 1974;). The phototrophic bacteria. . In Bergey’s Manual of Systematic Bacteriology, , 8th edn., pp. 24–75. Edited by Buchanan R. E., Gibbons N. E... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  19. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  20. Rothe B., Fischer A., Hirsch P., Sittig M., Stackebrandt E.. ( 1987;). The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen. nov., sp. nov.. Arch Microbiol 147:, 92–99. [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  24. Tanaka Y., Hanada S., Manome A., Tsuchida T., Kurane R., Nakamura K., Kamagata Y.. ( 2004;). Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. . Int J Syst Evol Microbiol 54:, 955–959. [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  27. Zhang J., Chen S. A., Zheng J. W., Cai S., Hang B. J., He J., Li S. P.. ( 2012;). Catellibacterium nanjingense sp. nov., a propanil-degrading bacterium isolated from activated sludge, and emended description of the genus Catellibacterium. . Int J Syst Evol Microbiol 62:, 495–499. [CrossRef][PubMed]
    [Google Scholar]
  28. Zheng J. W., Chen Y. G., Zhang J., Ni Y. Y., Li W. J., He J., Li S. P.. ( 2011;). Description of Catellibacterium caeni sp. nov., reclassification of Rhodobacter changlensis Anil Kumar et al. 2007 as Catellibacterium changlense comb. nov. and emended description of the genus Catellibacterium. . Int J Syst Evol Microbiol 61:, 1921–1926. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042051-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042051-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error