1887

Abstract

An actinomycete strain, designated strain SH2-13, was isolated from a marine sediment sample collected from the Andaman Sea of Thailand. Applying a polyphasic approach, the isolate was identified as a member of the genus using morphological and chemotaxonomic characteristics, including the presence of -diaminopimelic acid in the peptidoglycan. Whole-cell sugars were arabinose, galactose, glucose, rhamnose, ribose and xylose. Diagnostic polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides and phosphoglycolipids. The major menaquinones were MK-10(H), MK-10(H) and MK-10(H). 16S rRNA gene sequence analysis revealed similarity to JSM1-1 (99.1 %), 2-30-b(28) (99.1 %), DSM 43813 (98.8 %) and DSM 43026 (98.7 %). However, a combination of DNA–DNA hybridization results and phenotypic properties indicated that strain SH2-13 ( = NBRC 107934 = BCC 45601) should be classified as the type strain of a novel species, with the proposed name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041103-0
2013-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/570.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041103-0&mimeType=html&fmt=ahah

References

  1. Ara I. , Kudo T. . ( 2007; ). Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. . J Gen Appl Microbiol 53:, 29–37. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arai T. . ( 1975; ). Culture Media for Actinomycetes. Tokyo, Japan:: The Society for Actinomycetes;.
    [Google Scholar]
  3. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M. . ( 1972; ). Toward defining the course of evolution: minimum change for a species tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Gordon R. E. , Barnett D. A. , Handerhan J. E. , Pang C. H. N. . ( 1974; ). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  9. Itoh T. , Kudo T. , Parenti F. , Seino A. . ( 1989; ). Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. . Int J Syst Bacteriol 39:, 168–173. [CrossRef]
    [Google Scholar]
  10. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  11. Kawamoto I. . ( 1989; ). Genus Micromonospora Orskov 1923, 147AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 2442–2450. Edited by Williams S. T. , Sharpe M. E. , Holt J. G. . . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  12. Kawamoto I. , Oka T. , Nara T. . ( 1981; ). Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. . J Bacteriol 146:, 527–534.[PubMed]
    [Google Scholar]
  13. Kelly K. L. . ( 1964; ). Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kirby B. M. , Meyers P. R. . ( 2010; ). Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea . . Int J Syst Evol Microbiol 60:, 1328–1333. [CrossRef] [PubMed]
    [Google Scholar]
  17. Komagata K. , Suzuki K. I. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  18. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–148. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: John Wiley & Sons;.
    [Google Scholar]
  19. Limin Z. , Lijun X. , Jisheng R. , Ying H. . ( 2012;). Micromonospora yangpuensis sp. nov., isolated from a sponge in South China Sea. . Int J Syst Evol Microbiol 62:, 272–-278. [CrossRef]
    [Google Scholar]
  20. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Orskov J. . ( 1923; ). Investigations into the Morphology of the Ray Fungi. Copenhagen:: Levin and Munksgaard;.
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids (MIDI Technical Note 101). . Newark, DE:: MIDI;.
  24. Shirling E. B. , Gottlieb D. . ( 1966; ). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  25. Staneck J. L. , Roberts G. D. . ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  26. Suriyachadkun C. , Chunhametha S. , Thawai C. , Tamura T. , Potacharoen W. , Kirtikara K. , Sanglier J. J. . ( 2009; ). Planotetraspora thailandica sp. nov., isolated from soil in Thailand. . Int J Syst Evol Microbiol 59:, 992–997. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamaoka J. . ( 1994; ). Determination of DNA Base Composition. . In Chemical Methods in Prokaryotic Systematics, pp. 463–470. Edited by Goodfellow M. , O’Donnell A. G. . . Chichester:: John Wiley & Sons;.
    [Google Scholar]
  28. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tanasupawat S. , Jongrungruangchok S. , Kudo T. . ( 2010; ). Micromonospora marina sp. nov., isolated from sea sand. . Int J Syst Evol Microbiol 60:, 648–652. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thawai C. , Tanasupawat S. , Itoh T. , Suwanborirux K. , Kudo T. . ( 2005; ). Micromonospora siamensis sp. nov., isolated from Thai peat swamp forest. . J Gen Appl Microbiol 51:, 229–234. [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  33. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  34. Trujillo M. E. , Fernández-Molinero C. , Velázquez E. , Kroppenstedt R. M. , Schumann P. , Mateos P. F. , Martínez-Molina E. . ( 2005; ). Micromonospora mirobrigensis sp. nov.. Int J Syst Evol Microbiol 55:, 877–880. [CrossRef] [PubMed]
    [Google Scholar]
  35. Trujillo M. E. , Kroppenstedt R. M. , Schumann P. , Carro L. , Martínez-Molina E. . ( 2006; ). Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia . . Int J Syst Evol Microbiol 56:, 2381–2385. [CrossRef] [PubMed]
    [Google Scholar]
  36. Uchida K. , Aida K. . ( 1984; ). An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. . J Gen Appl Microbiol 30:, 131–134. [CrossRef]
    [Google Scholar]
  37. Verlander C. P. . ( 1992; ). Detection of horseradish peroxidase by colorimetry. . In Nonisotopic DNA Probe Techniques, pp. 185–201. Edited by Kricka L. J. . . New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  38. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–-464. [CrossRef]
    [Google Scholar]
  39. Williams S. T. , Cross T. . ( 1971; ). Actinomycetes. . In Methods in Microbiology, vol. 4, pp. 295–334. Edited by Booth C. . . London:: Academic Press;.
    [Google Scholar]
  40. Zhi X. Y. , Li W. J. , Stackebrandt E. . ( 2009; ). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol 59:, 589–608. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041103-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041103-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error