1887

Abstract

Six facultatively anaerobic, non-motile lactic acid bacteria were isolated from spontaneous cocoa bean fermentations carried out in Brazil, Ecuador and Malaysia. Phylogenetic analysis revealed that one of these strains, designated M75, isolated from a Brazilian cocoa bean fermentation, had the highest 16S rRNA gene sequence similarity towards LMG 24289 (97.7 %), LMG 24286 (93.3 %) and LMG 25373 (93.4 %). The remaining lactic acid bacteria isolates, represented by strain M622, showed the highest 16S rRNA gene sequence similarity towards the type strain of (99.9 %), a recently described species isolated from a flower in South Africa. gene sequence analysis indicated that the former strain represented a novel species, whereas , and gene sequence analysis indicated that the remaining five strains belonged to ; these results were confirmed by DNA–DNA hybridization experiments towards their respective nearest phylogenetic neighbours. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry proved successful for the identification of species of the genera and and for the recognition of the novel species. We propose to classify strain M75 ( = LMG 26217  = CCUG 61472) as the type strain of the novel species sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040311-0
2013-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1709.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040311-0&mimeType=html&fmt=ahah

References

  1. Björkroth K. J., Schillinger U., Geisen R., Weiss N., Hoste B., Holzapfel W. H., Korkeala H. J., Vandamme P.. ( 2002;). Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. . Int J Syst Evol Microbiol 52:, 141–148.[PubMed]
    [Google Scholar]
  2. Chambel L., Chelo I. M., Zé-Zé L., Pedro L. G., Santos M. A., Tenreiro R.. ( 2006;). Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. . Int J Syst Evol Microbiol 56:, 1375–1381. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S.. ( 1993;). Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. . J Appl Bacteriol 75:, 595–603. [CrossRef][PubMed]
    [Google Scholar]
  4. De Bruyne K., Schillinger U., Caroline L., Boehringer B., Cleenwerck I., Vancanneyt M., De Vuyst L., Franz C. M. A. P., Vandamme P.. ( 2007;). Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. . Int J Syst Evol Microbiol 57:, 2952–2959. [CrossRef][PubMed]
    [Google Scholar]
  5. De Bruyne K., Camu N., Lefebvre K., De Vuyst L., Vandamme P.. ( 2008a;). Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. . Int J Syst Evol Microbiol 58:, 2721–2725. [CrossRef][PubMed]
    [Google Scholar]
  6. De Bruyne K., Franz C. M. A. P., Vancanneyt M., Schillinger U., Mozzi F., de Valdez G. F., De Vuyst L., Vandamme P.. ( 2008b;). Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. . Int J Syst Evol Microbiol 58:, 2909–2916. [CrossRef][PubMed]
    [Google Scholar]
  7. De Bruyne K., Camu N., De Vuyst L., Vandamme P.. ( 2010;). Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. . Int J Syst Evol Microbiol 60:, 1999–2005. [CrossRef][PubMed]
    [Google Scholar]
  8. Endo A., Okada S.. ( 2008;). Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov.. Int J Syst Evol Microbiol 58:, 2195–2205. [CrossRef][PubMed]
    [Google Scholar]
  9. Endo A., Irisawa T., Futagawa-Endo Y., Sonomoto K., Itoh K., Takano K., Okada S., Dicks L. M. T.. ( 2011;). Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. . Int J Syst Evol Microbiol 61:, 898–902. [CrossRef][PubMed]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  11. Ghyselinck J., Van Hoorde K., Hoste B., Heylen K., De Vos P.. ( 2011;). Evaluation of MALDI-TOF MS as a tool for high-throughput dereplication. . J Microbiol Methods 86:, 327–336. [CrossRef][PubMed]
    [Google Scholar]
  12. Goris J., Suzuki K., Vos P. D., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  13. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee J.-S., Lee K. C., Ahn J.-S., Mheen T.-I., Pyun Y.-R., Park Y.-H.. ( 2002;). Weissella koreensis sp. nov., isolated from kimchi. . Int J Syst Evol Microbiol 52:, 1257–1261. [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  16. Magnusson J., Jonsson H., Schnürer J., Roos S.. ( 2002;). Weissella soli sp. nov., a lactic acid bacterium isolated from soil. . Int J Syst Evol Microbiol 52:, 831–834. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  18. Padonou S. W., Schillinger U., Nielsen D. S., Franz C. M. A. P., Hansen M., Hounhouigan J. D., Nago M. C., Jakobsen M.. ( 2010;). Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. . Int J Syst Evol Microbiol 60:, 2193–2198. [CrossRef][PubMed]
    [Google Scholar]
  19. Papalexandratou Z.. ( 2011;). Species diversity, community dynamics, and metabolite kinetics of the spontaneous cocoa bean fermentation process worldwide. PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium.
  20. Papalexandratou Z., Falony G., Romanens E., Jimenez J. C., Amores F., Daniel H.-M., De Vuyst L.. ( 2011a;). Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations. . Appl Environ Microbiol 77:, 7698–7714. [CrossRef][PubMed]
    [Google Scholar]
  21. Papalexandratou Z., Vrancken G., De Bruyne K., Vandamme P., De Vuyst L.. ( 2011b;). Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. . Food Microbiol 28:, 1326–1338. [CrossRef][PubMed]
    [Google Scholar]
  22. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  23. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  24. Sauer S., Kliem M.. ( 2010;). Mass spectrometry tools for the classification and identification of bacteria. . Nat Rev Microbiol 8:, 74–82. [CrossRef][PubMed]
    [Google Scholar]
  25. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  26. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Tanasupawat S., Shida O., Okada S., Komagata K.. ( 2000;). Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. . Int J Syst Evol Microbiol 50:, 1479–1485. [CrossRef][PubMed]
    [Google Scholar]
  29. Vela A. I., Fernández A., de Quirós Y. B., Herráez P., Domínguez L., Fernández-Garayzábal J. F.. ( 2011;). Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). . Int J Syst Evol Microbiol 61:, 2758–2762. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040311-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040311-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error