1887

Abstract

An aerobic chemoheterotrophic gliding bacterium, designated RYG, was isolated from a soil in Germany. Cells were Gram-stain-negative, thin rods (0.4–0.6 µm in width and 2.0–5.5 µm in length). Cells multiplied by normal cell division and no resting stages were observed. Colonies were yellow and displayed swarming edges. Gliding motility was observed in wet mounts. Strain RYG grew at pH 5.6–7.7 (optimum pH 6.6–7.0), at 13–37 °C (optimum 25–30 °C) and with 0–1.0 % NaCl (optimum 0–0.1 %). The isolate was incapable of atmospheric nitrogen fixation and grew on most mono- and disaccharides as well as a few polysaccharides and organic acids. The predominant menaquinone was MK-7, the major cellular fatty acids were Cω5 and iso-C and the major intact polar lipids were composed of phosphatidylethanolamine derivatives and two unknown series. The DNA G+C content was 49.9 mol%. Based on 16S rRNA gene sequence analysis, the isolate belonged to the phylum , class , order , but was only distantly related to any cultured bacteria. The closest relatives were 3B-2 and 10AO (both 93 % 16S rRNA gene sequence similarity). We propose a novel genus and species, gen. nov., sp. nov.. Strain RYG ( = DSM 24574 = ATCC BAA-2075) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039404-0
2013-02-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/654.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039404-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Bowman J. P.. ( 2006;). The genus Flavobacterium. . In The Prokaryotes: A Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 481–531. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York, NY:: Springer;.
    [Google Scholar]
  2. Cousin S., Päuker O., Stackebrandt E.. ( 2007;). Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. . Int J Syst Evol Microbiol 57:, 243–249. [CrossRef][PubMed]
    [Google Scholar]
  3. Dunfield P. F., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Dedysh S. N.. ( 2003;). Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. . Int J Syst Evol Microbiol 53:, 1231–1239. [CrossRef][PubMed]
    [Google Scholar]
  4. Dunfield P. F., Belova S. E., Vorob’ev A. V., Cornish S. L., Dedysh S. N.. ( 2010;). Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. . Int J Syst Evol Microbiol 60:, 2659–2664. [CrossRef][PubMed]
    [Google Scholar]
  5. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C.. ( 2004;). Using the iCycler iQ® Detection System to Estimate Microbial DNA Base Composition from Melting Curves. Hercules, CA, USA:: Biol-Rad Laboratories, Inc;.
    [Google Scholar]
  7. Hanson R. S., Hanson T. E.. ( 1996;). Methanotrophic bacteria. . Microbiol Rev 60:, 439–471.[PubMed]
    [Google Scholar]
  8. Hiraishi A., Kato K.. ( 1999;). Quinone profiles in lake sediments: Implications for microbial diversity and community structures. . J Gen Appl Microbiol 45:, 221–227. [CrossRef][PubMed]
    [Google Scholar]
  9. Janssen P. H.. ( 2006;). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. . Appl Environ Microbiol 72:, 1719–1728. [CrossRef][PubMed]
    [Google Scholar]
  10. Jurelevicius D., Korenblum E., Casella R., Vital R. L., Seldin L.. ( 2010;). Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum-contaminated soil. . J Microbiol Biotechnol 20:, 862–870. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim J.-J., Jin H. M., Lee H. J., Jeon C. O., Kanaya E., Koga Y., Takano K., Kanaya S.. ( 2011;). Flavobacterium banpakuense sp. nov., isolated from leaf-and-branch compost. . Int J Syst Evol Microbiol 61:, 1595–1600. [CrossRef][PubMed]
    [Google Scholar]
  12. Koch I. H., Gich F., Dunfield P. F., Overmann J.. ( 2008;). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. . Int J Syst Evol Microbiol 58:, 1114–1122. [CrossRef][PubMed]
    [Google Scholar]
  13. Kulichevskaya I. S., Kostina L. A., Valaskova V., Rijpstra W. I. C., Sinninghe Damsté J. S., de Boer W., Dedysh S. N.. ( 2012;). Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. . Int J Syst Evol Microbiol 62:, 1512–1520. [CrossRef][PubMed]
    [Google Scholar]
  14. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A.. & other authors ( 1997;). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. . Nature 390:, 249–256. [CrossRef][PubMed]
    [Google Scholar]
  15. Lewin R. A.. ( 1970;). Flexithrix dorotheae gen. et sp. nov. (Flexibacterales); and suggestions for reclassifying sheathed bacteria. . Can J Microbiol 16:, 511–515. [CrossRef]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  17. Sung M.-H., Kim H., Bae J.-W., Rhee S.-K., Jeon C. O., Kim K., Kim J.-J., Hong S.-P., Lee S.-G.. & other authors ( 2002;). Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. . Int J Syst Evol Microbiol 52:, 2251–2255. [CrossRef][PubMed]
    [Google Scholar]
  18. Tamaki H., Hanada S., Sekiguchi Y., Tanaka Y., Kamagata Y.. ( 2009;). Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment. . Environ Microbiol 11:, 1827–1834. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamas I., Dedysh S. N., Liesack W., Stott M. B., Alam M., Murrell J. C., Dunfield P. F.. ( 2010;). Complete genome sequence of Beijerinckia indica subsp. indica. . J Bacteriol 192:, 4532–4533. [CrossRef][PubMed]
    [Google Scholar]
  20. Vincent M., Guglielmetti G., Cassani G., Tonini C.. ( 1987;). Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. . Anal Chem 59:, 694–699. [CrossRef]
    [Google Scholar]
  21. Xu H.-X., Kawamura Y., Li N., Zhao L., Li T.-M., Li Z.-Y., Shu S., Ezaki T.. ( 2000;). A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube. . Int J Syst Evol Microbiol 50:, 1463–1469. [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon J.-H., Kang S.-J., Lee S.-Y., Lee J.-S., Park S.. ( 2011;). Ohtaekwangia koreensis gen. nov., sp. nov. and Ohtaekwangia kribbensis sp. nov., isolated from marine sand, deep-branching members of the phylum Bacteroidetes. . Int J Syst Evol Microbiol 61:, 1066–1072. [CrossRef][PubMed]
    [Google Scholar]
  23. Zehr J. P., McReynolds L. A.. ( 1989;). Use of degenerate oligonucleotides for amplication of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. . Appl Environ Microbiol 55:, 2522–2526.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039404-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039404-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error