1887

Abstract

A yellow-pigmented bacterial strain, designated LL01, was isolated from hexachlorocyclohexane (HCH)-contaminated soil at Spolana Neratovice, a former Czech producer of lindane. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL01 occupied a distinct phylogenetic position in the cluster, showing highest similarity to CC-FH12-1 (98.5 %). The DNA G+C content of strain LL01 was 66.1 mol%. The predominant respiratory pigment was ubiquinone Q-10. The polar lipid profile of strain LL01 also corresponded to those reported for other species (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipids), supporting its identification as a member of the genus Spermidine was the major polyamine observed. The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished strain LL01 from closely related species of the genus . Therefore, strain LL01 represents a novel species of the genus , for which the name sp. nov. is proposed (type strain LL01 = CCM 7979 = DSM 25410).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039396-0
2013-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/723.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039396-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Arden-Jones M. P., McCarthy A. J., Cross T.. ( 1979;). Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. . J Gen Microbiol 115:, 343–354. [CrossRef][PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  4. Böltner D., Moreno-Morillas S., Ramos J. L.. ( 2005;). 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. . Environ Microbiol 7:, 1329–1338. [CrossRef][PubMed]
    [Google Scholar]
  5. Busse J., Auling G.. ( 1988;). Polyamine patterns as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Kämpfer P., Denner E. B. M.. ( 1999;). Chemotaxonomic characterisation of Sphingomonas. . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef][PubMed]
    [Google Scholar]
  7. Christensen W. B.. ( 1946;). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. . J Bacteriol 52:, 461–466.
    [Google Scholar]
  8. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  9. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diaminobutyric acid (DAB). . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  10. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  12. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  13. Ito M., Prokop Z., Klvana M., Otsubo Y., Tsuda M., Damborský J., Nagata Y.. ( 2007;). Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. . Arch Microbiol 188:, 313–325. [CrossRef][PubMed]
    [Google Scholar]
  14. Jit S., Dadhwal M., Prakash O., Lal R.. ( 2008;). Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. . Int J Syst Evol Microbiol 58:, 1665–1669. [CrossRef][PubMed]
    [Google Scholar]
  15. Jukes T., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  16. Kumar M., Verma M., Lal R.. ( 2008;). Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. . Int J Syst Evol Microbiol 58:, 861–865. [CrossRef][PubMed]
    [Google Scholar]
  17. Kumari R., Subudhi S., Suar M., Dhingra G., Raina V., Dogra C., Lal S., van der Meer J. R., Holliger C., Lal R.. ( 2002;). Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. . Appl Environ Microbiol 68:, 6021–6028. [CrossRef][PubMed]
    [Google Scholar]
  18. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Evol Microbiol 38:, 358–361. [CrossRef]
    [Google Scholar]
  19. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  20. Lal R., Dadhwal M., Kumari K., Sharma P., Singh A., Kumari H., Jit S., Gupta S. K., Nigam A.. & other authors ( 2008;). Pseudomonas sp. to Sphingobium indicum: a journey of microbial degradation and bioremediation of hexachlorocyclohexane. . Indian J Microbiol 48:, 3–18. [CrossRef]
    [Google Scholar]
  21. Mohn W. W., Mertens B., Neufeld J. D., Verstraete W., de Lorenzo V.. ( 2006;). Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. . Environ Microbiol 8:, 60–68. [CrossRef][PubMed]
    [Google Scholar]
  22. Prakash O., Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta S. K.. & other authors ( 2007;). Polyphasic approach of bacterial classification – An overview of recent advances. . Indian J Microbiol 47:, 98–108. [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  25. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analysis. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  27. Tourova T. P., Antonov A. S.. ( 1988;). Identification of microorganisms by rapid DNA-DNA hybridization. . Methods Microbiol 19:, 333–355. [CrossRef]
    [Google Scholar]
  28. Van de Peer Y., De Wachter R.. ( 1994;). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. . Comput Appl Biosci 10:, 569–570.[PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  30. Young C.-C., Arun A. B., Kämpfer P., Busse H.-J., Lai W.-A., Chen W.-M., Shen F.-T., Rekha P. D.. ( 2008;). Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. . Int J Syst Evol Microbiol 58:, 1801–1806. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhu Y. F., Liu H., Xi Z. Q., Cheng H. X., Xu X. B.. ( 2005;). Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. . Chemosphere 60:, 770–778. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039396-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039396-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error