1887

Abstract

A Gram-stain-negative, non-spore-forming, non-motile, strictly aerobic, rod-shaped bacterial strain, designated CAU 1002, was isolated from a tidal flat sediment and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1002 grew optimally at 30 °C and pH 7.5. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1002 formed a distinct lineage within the genus and was most closely related to KCTC 22630 and KCTC 12051 (97.75 and 97.74 % 16S rRNA gene sequence similarity, respectively). The strain contained MK-7 as the major isoprenoid quinone and iso-C and Cω7 and/or iso-C 2-OH (summed feature 3) as the major fatty acids. The cell-wall peptidoglycan of strain CAU 1002 contained -diaminopimelic acids. The major whole-cell sugars were glucose, arabinose, sucrose, and ribose. The polar lipid profile was composed of phosphatidylethanolamine, five unidentified aminolipids, one unidentified aminophospholipid, one unidentified phospholipid, one unidentified aminoglycolipid, one unidentified glycolipid and twelve unidentified lipids. The DNA G+C content of strain CAU 1002 was 38.0 mol%. On the basis of phylogenetic inference, phenotypic, chemotaxonomic and genotypic data, strain CAU 1002 should be classified into the genus as a member of a novel species, for which the name sp. nov. is proposed. The type strain is CAU 1002 ( = KCTC 23759 = CCUG 61890). The description of the genus is emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.039214-0
2013-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/648.html?itemId=/content/journal/ijsem/10.1099/ijs.0.039214-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P., Nichols C. M., Gibson J. A. E.. ( 2003;). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. . Int J Syst Evol Microbiol 53:, 1343–1355. [CrossRef][PubMed]
    [Google Scholar]
  2. Cappuccino J. G., Sherman N.. ( 2002;). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  3. Conn H. J., Bartholomew J. W., Jennison M. W.. ( 1957;). Staining methods. . In Manual of Microbial Methods, pp. 30–36. Edited by the Society of American Bacteriologists. New York:: McGraw-Hill;.
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3 . 2). . Cladistics 5:, 164–166.
    [Google Scholar]
  8. Fitch W. M., Margoliash E.. ( 1967;). Construction of phylogenetic trees. . Science 155:, 279–284. [CrossRef][PubMed]
    [Google Scholar]
  9. Gordon R. E., Mihm J. M.. ( 1962;). Identification of Nocardia caviae (Erikson) nov. comb. . Ann N Y Acad Sci 98:, 628–636. [CrossRef]
    [Google Scholar]
  10. Goris J., Suzuki K. I., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA:DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. H... New York:: Academic Press;.
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  14. Liu Y., Li H., Jiang J. T., Liu Y. H., Song X. F., Xu C. J., Liu Z. P.. ( 2009;). Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. . Int J Syst Evol Microbiol 59:, 1759–1763. [CrossRef][PubMed]
    [Google Scholar]
  15. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. . J Chromatogr A 188:, 221–233. [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  18. Nam S. W., Kim W., Chun J., Goodfellow M.. ( 2004;). Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. . Int J Syst Evol Microbiol 54:, 1209–1212. [CrossRef][PubMed]
    [Google Scholar]
  19. Nedashkovskaya O. I., Vancanneyt M., Van Trappen S., Vandemeulebroecke K., Lysenko A. M., Rohde M., Falsen E., Frolova G. M., Mikhailov V. V., Swings J.. ( 2004;). Description of Algoriphagus aquimarinus sp. nov., Algoriphagus chordae sp. nov. and Algoriphagus winogradskyi sp. nov., from sea water and algae, transfer of Hongiella halophila Yi and Chun 2004 to the genus Algoriphagus as Algoriphagus halophilus comb. nov. and emended descriptions of the genera Algoriphagus Bowman et al. 2003 and Hongiella Yi and Chun 2004. . Int J Syst Evol Microbiol 54:, 1757–1764. [CrossRef][PubMed]
    [Google Scholar]
  20. Nedashkovskaya O. I., Kim S. B., Kwon K. K., Shin D. S., Luo X., Kim S.-J., Mikhailov V. V.. ( 2007;). Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al. 2004 and Chimaereicella Tiago et al. 2006 to the genus Algoriphagus, and emended description of the genus Algoriphagus Bowman et al. 2003 emend. Nedashkovskaya et al. 2004. . Int J Syst Evol Microbiol 57:, 1988–1994. [CrossRef][PubMed]
    [Google Scholar]
  21. Nicholson W. L., Setlow P.. ( 1990;). Sporulation, germination and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R., Cutting S. M... Chichester:: Wiley;.
    [Google Scholar]
  22. Oh K.-H., Kang S.-J., Lee S.-Y., Park S., Oh T.-K., Yoon J.-H.. ( 2012;). Algoriphagus namhaensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 62:, 575–579. [CrossRef][PubMed]
    [Google Scholar]
  23. Park S., Kang S.-J., Oh K.-H., Oh T.-K., Yoon J.-H.. ( 2010;). Algoriphagus lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 60:, 200–204. [CrossRef][PubMed]
    [Google Scholar]
  24. Rau J. E., Blotevogel K.-H., Fischer U.. ( 2012;). Algoriphagus aquaeductus sp. nov., isolated from a freshwater pipe. . Int J Syst Evol Microbiol 62:, 675–682. [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Schaal K. P.. ( 1986;). Genus Actinomyces Harz 1877, 133AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1383–1418. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  27. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Van Trappen S., Vandecandelaere I., Mergaert J., Swings J.. ( 2004;). Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. . Int J Syst Evol Microbiol 54:, 1969–1973. [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  33. Yi H., Chun J.. ( 2004;). Hongiella mannitolivorans gen. nov., sp. nov., Hongiella halophila sp. nov. and Hongiella ornithinivorans sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 54:, 157–162. [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon J.-H., Kang S.-J., Jung S.-Y., Lee C.-H., Oh T.-K.. ( 2005a;). Algoriphagus yeomjeoni sp. nov., isolated from a marine solar saltern in the Yellow Sea, Korea. . Int J Syst Evol Microbiol 55:, 865–870. [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon J.-H., Kang S.-J., Oh T.-K.. ( 2005b;). Algoriphagus locisalis sp. nov., isolated from a marine solar saltern. . Int J Syst Evol Microbiol 55:, 1635–1639. [CrossRef][PubMed]
    [Google Scholar]
  36. Yoon J.-H., Lee M.-H., Kang S.-J., Oh T.-K.. ( 2006;). Algoriphagus terrigena sp. nov., isolated from soil. . Int J Syst Evol Microbiol 56:, 777–780. [CrossRef][PubMed]
    [Google Scholar]
  37. Young C.-C., Lin S.-Y., Arun A. B., Shen F. T., Chen W. M., Rekha P. D., Langer S., Busse H. J., Wu Y. H., Kämpfer P.. ( 2009;). Algoriphagus olei sp. nov., isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 59:, 2909–2915. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.039214-0
Loading
/content/journal/ijsem/10.1099/ijs.0.039214-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error