1887

Abstract

Representatives of a new cyanobacterial genus, Lamprinou & Pantazidou gen. nov., were found in fresh material from Cave ‘Francthi’ (Peloponnese, Greece) and isolated in cultures. Ecological data relating to the environmental parameters of the sampling sites are provided, such as the photosynthetically active radiation (PAR), temperature and relative humidity. Morphological characteristics and the life cycle of the type species Lamprinou & Pantazidou sp. nov. were studied using light microscopy and scanning and transmission microscopy. Molecular analysis based on the 16S rRNA gene sequence was also conducted. sp. nov. is a false-branched nostocalean cyanobacterium with both isopolar and heteropolar filaments bearing mono-pored and bi-pored heterocysts, and also hormogonia and akinetes. Isopolar filaments adhere by the centre to the substrate and are found mainly in fresh material and in young cultures; heteropolar filaments bearing a basic mono-pore heterocyst are dominant in aged (more than one-year-old) cultures. According to the revised taxonomic classification system of Komárek & Anagnostidis (1989) [Komárek, J. & Anagnostidis, K. (1989). , 56, 247–345] based mainly on morphological data, the new genus described here shares morphological characters with both nostocalean families Scytonemataceae and Microchaetaceae, showing similarities in particular to [Vaccarino, M. A. & Johansen, J. R. (2011). 11, 149–161], Microchaetaceae. Molecular data from the 16S rRNA sequence determined in this paper showed that sp. nov. is more related to the family Microchaetaceae, and the five phylotypes analysed by PCR showed that the closest nostocalean relatives are SAG 93.79 (GenBank accession no. GQ287651) and sp. ANT.L52B.5 (AY493596) with 95–96 % and 96 % similarity, respectively. In contrast, the five phylotypes showed a distant similarity to (<91 %). The phenotypic and genetic traits strongly supported the classification of the five phylotypes as a new taxon for which the name Lamprinou & Pantazidou gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038679-0
2012-12-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2870.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038679-0&mimeType=html&fmt=ahah

References

  1. Anagnostidis K. , Komárek J. . ( 1985; ). Modern approach to the classification system of Cyanophytes. 1. Introduction. . Algol Stud 38/39:, 291–302.
    [Google Scholar]
  2. Anagnostidis K. , Komárek J. . ( 1988; ). Modern approach to the classification system of Cyanophytes. 3. Oscillatoriales. . Algol Stud 50/55:, 327–472.
    [Google Scholar]
  3. Anagnostidis K. , Komárek J. . ( 1990; ). Modern approach to the classification system of Cyanophytes. 5. Stigonematales. . Algol Stud 59:, 1–73.
    [Google Scholar]
  4. Anagnostidis K. , Roussomoustakaki M. . ( 1985; ). On the validity of the genus Symploca Kütz. ex Gom. . Algol Stud 38/39:, 221–234.
    [Google Scholar]
  5. Asencio A. , Aboal M. , Hoffmann L. . ( 1996; ). A new cave-inhabiting blue-green alga: Symphyonema cavernicolum sp. nova (Mastigocladaceae, Stigonematales). . Algol Stud 83:, 73–82.
    [Google Scholar]
  6. Desikachary T. V. . ( 1959; ). Cyanophyta. New Delhi:: Indian Council of Agricultural Research;.
    [Google Scholar]
  7. Fiore M. F. , Moon D. H. , Tsai S. M. , Lee H. , Trevors J. T. . ( 2000; ). Miniprep DNA isolation from unicellular and filamentous cyanobacteria. . J Microbiol Methods 39:, 159–169. [CrossRef] [PubMed]
    [Google Scholar]
  8. Flechtner V. R. , Boyer S. L. , Johansen J. , DeNoble M. L. . ( 2002; ). Spirirestris rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. . Nova Hedwigia 74:, 1–24. [CrossRef]
    [Google Scholar]
  9. Geitler L. . ( 1932; ). Cyanophyceae. Leipzig:: Akademische Verlagsgesellschaft;.
    [Google Scholar]
  10. Gomont M. . ( 1892; ). Monographie des Oscillariées (Nostocacées hormocystées). . Ann Sci Nat Bot Ser 7:, 263–368.
    [Google Scholar]
  11. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hernández-Mariné M. , Canals T. . ( 1994; ). Herpyzonema pulverulentum (Mastigocladaceae), a new cavernicolous atmophytic and lime-incrusted cyanophyte. . Algol Stud 75:, 123–136.
    [Google Scholar]
  13. Hoffmann L. , Komárek J. , Kastovsky J. . ( 2005; ). System of cyanoprokaryotes (cyanobacteria) state in 2004. . Algol Stud 117:, 95–115. [CrossRef]
    [Google Scholar]
  14. Huelsenbeck J. P. , Ronquist F. . ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. . Bioinformatics 17:, 754–755. [CrossRef] [PubMed]
    [Google Scholar]
  15. Johansen J. , Casamatta D. A. . ( 2005; ). Recognizing cyanobacterial diversity through adoption of a new species paradigm. . Algol Stud 117:, 71–93. [CrossRef]
    [Google Scholar]
  16. Komárek J. . ( 2006; ). Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. . Algae 21:, 349–375. [CrossRef]
    [Google Scholar]
  17. Komárek J. . ( 2010; ). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). . Hydrobiologia 639:, 245–259. [CrossRef]
    [Google Scholar]
  18. Komárek J. , Anagnostidis K. . ( 1986; ). Modern approach to the classification system of Cyanophytes. 2. Chroococcales. . Algol Stud 43:, 157–226.
    [Google Scholar]
  19. Komárek J. , Anagnostidis K. . ( 1989; ). Modern approach to the classification system of Cyanophytes. 4. Nostocales. . Algol Stud 56:, 247–345.
    [Google Scholar]
  20. Korelusová J. . ( 2008; ). Phylogeny of heterocytous cyanobacteria (Nostocales and Stigonematales). MSc Thesis, 33 pp. Faculty of Science, University of South Bohemia, Branišovská, České Budějovice;.
    [Google Scholar]
  21. Lamprinou V. , Pantazidou A. , Papadogiannaki G. , Radea C. , Economou-Amili A. . ( 2009; ). Cyanobacteria and associated invertebrates in Leontari cave. . Fottea 9:, 155–164.[CrossRef]
    [Google Scholar]
  22. Lamprinou V. , Hernández-Mariné M. , Canals T. , Kormas K. , Economou-Amilli A. , Pantazidou A. . ( 2011; ). Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. . Int J Syst Evol Microbiol 61:, 2907–2915. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . New York:: John Wiley and Sons;.
    [Google Scholar]
  24. Lokmer A. . ( 2007; ). Polyphasic approach to the taxonomy of the selected oscillatorian strains (Cyanobacteria). MSc Thesis, 40 pp. Faculty of Biological Science, University of South Bohemia, Branišovská, České Budějovice;.
    [Google Scholar]
  25. Mishler B. , Theriot E. C. . ( 2000; ). The phylogenetic species concept (sensu Mishler and Theriot): monophyly, apomorphy and phylogenetic species concepts. . In Species concepts and phylogenetic theory: a debate, pp. 44–54. Edited by Wheeler Q. D. , Meier R. . . New York:: Columbia University Press;.
    [Google Scholar]
  26. Nübel U. , Garcia-Pichel F. , Muyzer G. . ( 1997; ). PCR primers to amplify 16S rRNA genes from cyanobacteria. . Appl Environ Microbiol 63:, 3327–3332.[PubMed]
    [Google Scholar]
  27. Posada D. . ( 2008; ). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rippka R. . ( 1988; ). Recognition and identification of Cyanobacteria. . Methods Enzymol 167:, 28–67. [CrossRef]
    [Google Scholar]
  29. Rippka R. , Deruelles J. , Waterbury J. B. , Herdman M. , Stanier R. Y. . ( 1979; ). Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. . J Gen Microbiol 111:, 1–61.[CrossRef]
    [Google Scholar]
  30. Rodríguez F. J. , Oliver J. L. , Marín A. , Medina J. R. . ( 1990; ). The general stochastic model of nucleotide substitution. . J Theor Biol 142:, 485–501. [CrossRef] [PubMed]
    [Google Scholar]
  31. Roldán M. , Clavero E. , Canals T. , Gómez-Bolea A. , Ariño X. , Hernández-Mariné M. . ( 2004; ). Distribution of phototrophic biofilms in cavities (Garraf, Spain). . Nov Hedw 78:, 329–351. [CrossRef]
    [Google Scholar]
  32. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  34. Stanier R. Y. , Kunisawa R. , Mandel M. , Cohen-Bazire G. . ( 1971; ). Purification and properties of unicellular blue-green algae (order Chroococcales). . Bacteriol Rev 35:, 171–205.[PubMed]
    [Google Scholar]
  35. Stanier R. Y. , Sistrom W. R. , Hansen T. A. , Whitton B. A. , Castenholz R. W. , Pfennig N. , Gorlenko V. N. , Kondratieva E. N. , Eimhjellen K. E. . & other authors ( 1978; ). Proposal to place nomenclature of cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. . Int J Syst Bacteriol 28:, 335–336. [CrossRef]
    [Google Scholar]
  36. Starmach K. . ( 1966; ). Cyanophyta – Glaucophyta (Sinice – Glaukofity). Warsaw:: Polska Akademia Nauk;.
    [Google Scholar]
  37. Tamura K. , Nei M. . ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  38. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  39. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  40. Vaccarino M. A. , Johansen J. R. . ( 2011; ). Scytonematopsis contorta sp. nov. (Nostocales), a new species from the Hawaiian Islands. . Fottea 11:, 149–161.[CrossRef]
    [Google Scholar]
  41. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038679-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038679-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error