1887

Abstract

A Gram-positive, obligately anaerobic, motile, slender, flexible rod, designated SC/BZ-SP2, was isolated from mixed alkaline water and sediment of Soap Lake, Washington State, USA. Strain SC/BZ-SP2 formed salmon to pink colonies and was alkaliphilic. The isolate grew at pH 7.5–10.5 (optimum pH 9.7), at 8–40 °C (optimum 35–37 °C) and with 0.35–1.38 M Na (optimum 0.44–0.69 M Na). The isolate utilized -arabinose, -ribose, -xylose, -fructose, -mannose, -galactose, cellobiose, maltose, sucrose, trehalose, sorbitol, xylan, malate and yeast extract as carbon and energy sources; best growth was observed with -arabinose, cellobiose, maltose and trehalose. The major fermentation products from beechwood xylan were propionate and acetate. The dominant fatty acids were iso-C, anteiso-C, iso-C 3-OH, C 3-OH and C 3-OH. The cell-wall sugars were ribose, xylose, galactose and glucose. Thiosulfate and sulfite could be reduced to sulfide. The genomic DNA G+C content was 39.5±0.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SC/BZ-SP2 belonged to the family of the order , class The most closely related strains were Z-7010 (91.8 % 16S rRNA gene sequence similarity), Cy s1 (91.0 %) and Fru22 (90.4 %). On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain SC/BZ-SP2 represents a novel species in a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is SC/BZ-SP2 ( = ATCC BAA-2172  = DSM 24412).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038315-0
2012-11-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2618.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038315-0&mimeType=html&fmt=ahah

References

  1. Baron E. J., Finegold S. M. 1990 Bailey and Scott’s Diagnostic Microbiology, 8th edn. St Louis: Mosby;
    [Google Scholar]
  2. Denger K., Warthmann R., Ludwig W., Schink B. 2002; Anaerophaga thermohalophila gen. nov., sp. nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178[PubMed]
    [Google Scholar]
  3. Dimitriu P. A., Pinkart H. C., Peyton B. M., Mormile M. R. 2008; Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington State. Appl Environ Microbiol 74:4877–4888 [View Article][PubMed]
    [Google Scholar]
  4. Dodd D., Cann I. K. O. 2009; Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17 [CrossRef]
    [Google Scholar]
  5. Fardeau M. L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J. L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Horner-Devine M. C., Lage M., Hughes J. B., Bohannan B. J. M. 2004; A taxa-area relationship for bacteria. Nature 432:750–753 [View Article][PubMed]
    [Google Scholar]
  9. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  10. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [View Article][PubMed]
    [Google Scholar]
  11. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal_x version 2. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  12. Ljungdahl L. G., Wiegel J. 1986; Anaerobic fermentations. In Manual of Industrial Microbiology and Biotechnology pp. 84–96 Edited by Demain A. L., Solomon N. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Niimura Y., Koh E., Yanagida F., Suzuki K., Komagata K., Kozaki M. 1990; Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301 [View Article]
    [Google Scholar]
  14. Nishiyama T., Ueki A., Kaku N., Watanabe K., Ueki K. 2009; Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:1901–1907 [View Article][PubMed]
    [Google Scholar]
  15. Ogg C. D., Patel B. K. C. 2009; Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:95–101 [View Article][PubMed]
    [Google Scholar]
  16. Patel G. B., Khan A. W., Agnew B. J., Colvin J. R. 1980; Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov.. Int J Syst Bacteriol 30:179–185 [View Article]
    [Google Scholar]
  17. Rivas R., Trujillo M. E., Mateos P. F., Martínez-Molina E., Velázquez E. 2004; Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol 54:1987–1990 [View Article][PubMed]
    [Google Scholar]
  18. Saha B. C. 2003; Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 (revised February 1997). Newark, DE: MIDI Inc;
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  22. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  23. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 1999; Phylogenetic analysis of genus Marinilabilia and related bacteria based on the amino acid sequences of gyrB and emended description of Marinilabilia salmonicolor with Marinilabilia agarovorans as its subjective synonym. Int J Syst Bacteriol 49:1551–1557 [View Article][PubMed]
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  26. Uffen R. L. 1997; Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6 [View Article]
    [Google Scholar]
  27. Veldkamp H. A. 1961; A study of two marine agar-decomposing, facultatively anaerobic myxobacteria. J Gen Microbiol 26:331–342[PubMed] [CrossRef]
    [Google Scholar]
  28. Viikari L., Kantelinen A., Sundquist J., Linko M. 1994; Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350 [View Article]
    [Google Scholar]
  29. Wagner I. D., Wiegel J. 2008; Diversity of thermophilic anaerobes. In Incredible Anaerobes: From Physiology to Genomics to Fuels pp. 1–43 Edited by Wiegel J., Maier R. J., Adams M. W. W. Boston: Blackwell Publishing;
    [Google Scholar]
  30. Wagner I. D., Ahmed S., Zhao W., Zhang C. L., Romanek C. S., Rohde M., Wiegel J. 2009; Caldanaerovirga acetigignens gen. nov., sp. nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA. Int J Syst Evol Microbiol 59:2685–2691 [View Article][PubMed]
    [Google Scholar]
  31. Whiton R. S., Lau P., Morgan S. L., Gilbart J., Fox A. 1985; Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr A 347:109–120 [View Article][PubMed]
    [Google Scholar]
  32. Yokoyama H., Wagner I. D., Wiegel J. 2010; Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov.. Int J Syst Evol Microbiol 60:67–71 [View Article][PubMed]
    [Google Scholar]
  33. Zakrzewska-Czerwińska J., Mordarski M., Goodfellow M. 1988; DNA base composition and homology values in the classification of some Rhodococcus species. J Gen Microbiol 134:2807–2813[PubMed]
    [Google Scholar]
  34. Zhao B., Wang H., Li R., Mao X. 2010; Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 60:1125–1129 [View Article][PubMed]
    [Google Scholar]
  35. Zhilina T. N., Garnova E. S., Tourova T. P., Kostrikina N. A., Zavarzin G. A. 2001; Amphibacillus fermentum sp. nov., Amphibacillus tropicus sp. nov., new alkaliphilic, facultatively anaerobic, saccharolytic bacilli from Lake Magadi. Microbiology (English translation of Microbiologiia) 70:711–722
    [Google Scholar]
  36. Zhilina T. N., Appel R., Probian C., Brossa E. L., Harder J., Widdel F., Zavarzin G. A. 2004; Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253 [View Article][PubMed]
    [Google Scholar]
  37. Zhilina T. N., Kevbrin V. V., Tourova T. P., Lysenko A. M., Kostrikina N. A., Zavarzin G. A. 2005; Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology (English translation of Microbiologiia) 74:557–566
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038315-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038315-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error