1887

Abstract

Despite recent advances in commercially optimized identification systems, bacterial identification remains a challenging task in many routine microbiological laboratories, especially in situations where taxonomically novel isolates are involved. The 16S rRNA gene has been used extensively for this task when coupled with a well-curated database, such as EzTaxon, containing sequences of type strains of prokaryotic species with validly published names. Although the EzTaxon database has been widely used for routine identification of prokaryotic isolates, sequences from uncultured prokaryotes have not been considered. Here, the next generation database, named EzTaxon-e, is formally introduced. This new database covers not only species within the formal nomenclatural system but also phylotypes that may represent species in nature. In addition to an identification function based on Basic Local Alignment Search Tool () searches and pairwise global sequence alignments, a new objective method of assessing the degree of completeness in sequencing is proposed. All sequences that are held in the EzTaxon-e database have been subjected to phylogenetic analysis and this has resulted in a complete hierarchical classification system. It is concluded that the EzTaxon-e database provides a useful taxonomic backbone for the identification of cultured and uncultured prokaryotes and offers a valuable means of communication among microbiologists who routinely encounter taxonomically novel isolates. The database and its analytical functions can be found at http://eztaxon-e.ezbiocloud.net/.

Funding
This study was supported by the:
  • Interdisciplinary Research Program of Seoul National University
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038075-0
2012-03-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/716.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038075-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [View Article][PubMed]
    [Google Scholar]
  3. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Dojka M. A., Hugenholtz P., Haack S. K., Pace N. R. 1998; Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877[PubMed]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies with a molecular clock. Syst Zool 34:152–161 [View Article]
    [Google Scholar]
  7. Field K. G., Gordon D., Wright T., Rappé M., Urback E., Vergin K., Giovannoni S. J. 1997; Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl Environ Microbiol 63:63–70[PubMed]
    [Google Scholar]
  8. Golub G. H., van Loan C. F. 1996 Matrix Computations, 3rd edn. Baltimore, London: The Johns Hopkins University Press;
    [Google Scholar]
  9. He Y. L., Ding Y. F., Long Y. Q. 1991; Two cellulolytic Clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov.. Int J Syst Bacteriol 41:306–309 [View Article][PubMed]
    [Google Scholar]
  10. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J. 2005; jphydit: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173 [View Article][PubMed]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Kalisky T., Quake S. R. 2011; Single-cell genomics. Nat Methods 8:311–314 [View Article][PubMed]
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  14. Lee J. H., Yi H., Chun J. 2011; rRNASelector: a computer program for selecting ribosomal RNA encoding sequences from metagenomic and metatranscriptomic shotgun libraries. J Microbiol 49:689–691 [View Article][PubMed]
    [Google Scholar]
  15. Legendre P. L. L. 1998 Numerical Ecology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  16. MacLean D., Jones J. D., Studholme D. J. 2009; Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296[PubMed]
    [Google Scholar]
  17. Marcy Y., Ouverney C., Bik E. M., Lösekann T., Ivanova N., Martin H. G., Szeto E., Platt D., Hugenholtz P. other authors 2007; Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104:11889–11894 [View Article][PubMed]
    [Google Scholar]
  18. Murray R. G., Stackebrandt E. 1995; Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187 [View Article][PubMed]
    [Google Scholar]
  19. Myers E. W., Miller W. 1988; Optimal alignments in linear space. Comput Appl Biosci 4:11–17[PubMed]
    [Google Scholar]
  20. Rosselló-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  23. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  25. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  26. Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N. N., Kunin V., Goodwin L., Wu M. other authors 2009; A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038075-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038075-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error