1887

Abstract

A Gram-negative, rod-shaped, weakly motile, non-spore-forming bacterium (D9) was isolated from the gut of (Diplopoda) on 1/3-strength nutrient agar plates. On the basis of 16S rRNA gene sequence similarity, strain D9 was shown to be phylogenetically closely related to the type strain of , the sole species of the genus , family The similarity of the 16S rRNA gene sequences of train D9 and DSM 5075 was 98.4 %. Other strains that showed high pairwise similarities with the isolate belonged to the genus : ATCC 33641 (96.8 % 16S rRNA gene sequence similarity), CCUG 53443 (96.8 %), NCTC 5923 (96.8 %), ATCC 29833 (96.8 %), CCUG 52882 (96.7 %) and ATCC 29473 (96.5 % ). The similarities of sequences of the housekeeping genes , and between strain D9 and DSM 5075 and other members of the were less than 94 %. Phylogenetic trees based on all four gene sequences unequivocally grouped the isolate with the type strain of and separately from the genus . Cells contained the quinones Q-8, Q-7 and MK-8. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the DNA (48.3 mol%) and the whole-cell fatty acid composition of strain D9 (C, Cω7, C, cyclo-C and Cω7 as major components) were typical for members of the . DNA–DNA hybridization of strain D9 with DSM 5075 resulted in a relatedness of 30.4 %, indicating that the isolate did not belong to . Physiological tests allowed the phenotypic differentiation of strain D9 from DSM 5075 as well as from members of the genus From these results, it is concluded that strain D9 represents a novel species, for which the name sp. nov. is proposed (type strain D9  = DSM 21983  = CCM 7845). The description of the genus is emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036749-0
2013-01-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/260.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036749-0&mimeType=html&fmt=ahah

References

  1. Aldová E., Hausner O., Gabrhelová M., Schindler J., Petrás P., Braná H.. ( 1983;). A hydrogen sulphide producing Gram-negative rod from water. . Zentralbl Bakteriol Mikrobiol Hyg [A] 254:, 95–108.[PubMed]
    [Google Scholar]
  2. Aldová E., Hausner O., Brenner D. J., Kocmoud Z., Schindler J., Potuzniková B., Petrás P.. ( 1988;). Pragia fontium gen. nov., sp. nov. of the family Enterobacteriaceae, isolated from water. . Int J Syst Bacteriol 38:, 183–189. [CrossRef]
    [Google Scholar]
  3. Bottone E. J., Bercovier H., Mollaret H. H.. ( 2005;). Genus XLI. Yersinia Van Loghem 1944, 15AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B, The Gammaproteobacteria, pp. 838–848. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  4. Bouvet O. M. M., Grimont P. A. D., Richard C., Aldová E., Hauser O., Gabrhelová M.. ( 1985;). Budvicia aquatica gen. nov., sp. nov.: a hydrogen sulfide-producing member of the Enterobacteriaceae. . Int J Syst Bacteriol 35:, 60–64. [CrossRef]
    [Google Scholar]
  5. Brenner D. J., Farmer J. J. III. ( 2005;). Family I. Enterobacteriaceae Rahn 1937, Nom. Fam. Cons. Opin. 15, Jud. Comm. 1958a, 73; Ewing, Farmer, and Brenner 1980, 674; Judicial Commission 1981, 104. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B, The Gammaproteobacteria, pp. 587–607. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  6. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  9. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  10. Dauga C.. ( 2002;). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. . Int J Syst Evol Microbiol 52:, 531–547.[PubMed]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  12. Embley T. M., Wait R.. ( 1994;). Structural lipids of Eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 141–147. Edited by Goodfellow M., O’Donnell A. G... New York:: John Wiley and Sons;.
    [Google Scholar]
  13. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  14. Harada H., Ishikawa H.. ( 1997;). Phylogenetical relationship based on groE genes among phenotypically related Enterobacter, Pantoea, Klebsiella, Serratia and Erwinia species. . J Gen Appl Microbiol 43:, 355–361. [CrossRef][PubMed]
    [Google Scholar]
  15. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  16. Huisman G. W., Siegele D., Zambrano M. M., Kolter R.. ( 1996;). Morphological and physiological changes during stationary phase. . In Escherichia coli and Salmonella. Cellular and Molecular Biology, , 2nd edn., vol. 1, p. 1672. Edited by Neidhardt F. C... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Huß V. A. R., Festl H., Schleifer K.-H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  18. Jantzen E., Lassen J.. ( 1980;). Characterization of Yersinia species by analysis of whole-cell fatty acids. . Int J Syst Bacteriol 30:, 421–428. [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Ruppel S., Remus R.. ( 2005;). Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. . Syst Appl Microbiol 28:, 213–221. [CrossRef][PubMed]
    [Google Scholar]
  21. Knapp B. A., Seeber J., Podmirseg S. M., Rief A., Meyer E., Insam H.. ( 2009;). Molecular fingerprinting analysis of the gut microflora of Cylindroiulus fulviceps (diplopoda). . Pedobiologia (Jena) 52:, 325–336. [CrossRef]
    [Google Scholar]
  22. Knapp B. A., Seeber J., Rief A., Meyer E., Insam H.. ( 2010;). Bacterial community composition of the gut microbiota of Cylindroiulus fulviceps (diplopoda) as revealed by molecular fingerprinting and cloning. . Folia Microbiol (Praha) 55:, 489–496. [CrossRef][PubMed]
    [Google Scholar]
  23. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  24. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  25. Madhaiyan M., Poonguzhali S., Lee J.-S., Saravanan V. S., Lee K.-C., Santhanakrishnan P.. ( 2010;). Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. . Int J Syst Evol Microbiol 60:, 1559–1564. [CrossRef][PubMed]
    [Google Scholar]
  26. Merhej V., Adékambi T., Pagnier I., Raoult D., Drancourt M.. ( 2008;). Yersinia massiliensis sp. nov., isolated from fresh water. . Int J Syst Evol Microbiol 58:, 779–784. [CrossRef][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  29. Mollet C., Drancourt M., Raoult D.. ( 1997;). rpoB sequence analysis as a novel basis for bacterial identification. . Mol Microbiol 26:, 1005–1011. [CrossRef][PubMed]
    [Google Scholar]
  30. Nagarajan S., Swaminathan M., Sabarathinam P.. ( 2005;). Changes in the fatty-acid profile of cyanide-utilizing Yersinia species. . Chem Biodivers 2:, 780–784. [CrossRef][PubMed]
    [Google Scholar]
  31. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  32. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E.. ( 1996;). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:, 1088–1092. [CrossRef][PubMed]
    [Google Scholar]
  33. Rameshkumar N., Lang E., Nair S.. ( 2010;). Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 60:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
  34. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  35. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  36. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  37. Skrodenyte-Arbaciauskiene V., Sruoga A., Butkauskas D.. ( 2006;). Assessment of microbial diversity in the river trout Salmo truttafario L. intestinal tract identified by partial 16S rRNA gene sequence analysis. . Fish Sci 72:, 597–602. [CrossRef]
    [Google Scholar]
  38. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–655. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  39. Souza R. A., Falcão D. P., Falcão J. P.. ( 2011;). Emended description of Yersinia massiliensis. . Int J Syst Evol Microbiol 61:, 1094–1097. [CrossRef][PubMed]
    [Google Scholar]
  40. Sprague L. D., Scholz H. C., Amann S., Busse H. J., Neubauer H.. ( 2008;). Yersinia similis sp. nov.. Int J Syst Evol Microbiol 58:, 952–958. [CrossRef][PubMed]
    [Google Scholar]
  41. Stanier R. Y., Palleroni N. J., Doudoroff M.. ( 1966;). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43:, 159–271. [CrossRef][PubMed]
    [Google Scholar]
  42. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  43. Tan Y., Wu M., Liu H., Dong X., Guo Z., Song Z., Li Y., Cui Y., Song Y.. & other authors ( 2010;). Cellular fatty acids as chemical markers for differentiation of Yersinia pestis and Yersinia pseudotuberculosis. . Lett Appl Microbiol 50:, 104–111. [CrossRef][PubMed]
    [Google Scholar]
  44. Ursing J., Brennert D. J., Bercovier H., Fanning G. R., Steigerwaldt A. G., Brault J., Mollaret H. H.. ( 1980;). Yersinia frederiksenii: a new species of Enterobacteriaceae composed of rhamnose-positive strains (formerly called atypical Yersinia enterocolitica or Yersinia enterocolitica-like). . Curr Microbiol4:, 213–217. [CrossRef]
    [Google Scholar]
  45. Verbarg S., Frühling A., Cousin S., Brambilla E., Gronow S., Lünsdorf H., Stackebrandt E.. ( 2008;). Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae. . Curr Microbiol 56:, 603–608. [CrossRef][PubMed]
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  47. Whittaker P., Fry F. S., Curtis S. K., Al-Khaldi S. F., Mossoba M. M., Yurawecz M. P., Dunkel V. C.. ( 2005;). Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. . J Agric Food Chem 53:, 3735–3742. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036749-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036749-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error