1887

Abstract

A strictly anoxic, Gram-stain-positive, non-motile -like bacterium, designated strain M25, was isolated from a human faecal sample. Strain M25 was negative for both catalase and oxidase activity, utilized carbohydrates as fermentable substrates, produced lactate and acetate as the major end products of glucose fermentation in PYG medium, and had a DNA G+C content of 41.6 mol%. Comparative 16S rRNA gene sequencing showed that strain M25 was closely related to ATCC 29174 (96.40 % 16S rRNA gene sequence similarity) and HFTH-1 (96.17 %) within the family . Straight-chain saturated and monounsaturated cellular fatty acids were also detected, the majority being C, C and C dimethyl acetal acids. Based on the phenotypic, genotypic and phylogenetic characteristics presented in this study, strain M25 represents a novel species within the genus for which the name sp. nov. is proposed. The type strain is M25 ( = KCTC 5980 = JCM 17205).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036541-0
2013-02-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/599.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036541-0&mimeType=html&fmt=ahah

References

  1. Baker G. C., Smith J. J., Cowan D. A.. ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  2. Cavalli-Sforza L. L., Edwards A. W.. ( 1967;). Phylogenetic analysis. Models and estimation procedures. . Am J Hum Genet 19:, 233–257.[PubMed]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Furuya H., Ide Y., Hamamoto M., Asanuma N., Hino T.. ( 2010;). Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide. . Arch Microbiol 192:, 365–372. [CrossRef][PubMed]
    [Google Scholar]
  5. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  6. Guerrant G. O., Lambert M. A., Moss C. W.. ( 1982;). Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography. . J Clin Microbiol 16:, 355–360.[PubMed]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S.,, Lee J. H.. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Liu C., Finegold S. M., Song Y., Lawson P. A.. ( 2008;). Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 58:, 1896–1902. [CrossRef][PubMed]
    [Google Scholar]
  9. MIDI ( 1999;). Sherlock Microbial Identification System Operating Manual, version 3 . 0. Newark, DE: MIDI.
  10. Park S. K., Kim M. S., Roh S. W., Bae J. W.. ( 2012;). Blautia stercoris sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 62:, 776–779. [CrossRef][PubMed]
    [Google Scholar]
  11. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  12. Suau A., Bonnet R., Sutren M., Godon J. J., Gibson G. R., Collins M. D., Doré J.. ( 1999;). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. . Appl Environ Microbiol 65:, 4799–4807.[PubMed]
    [Google Scholar]
  13. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  14. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036541-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036541-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error