1887

Abstract

A yellow-pigmented bacterial strain designated TNR-25 was isolated from spring water in Taiwan and was characterized using a polyphasic taxonomic approach. Strain TNR-25 was Gram-negative, obligately aerobic, rod-shaped, non-motile and non-spore-forming. Growth occurred at 15–40 °C (optimum, 25 °C), at pH 6.0–10.0 (optimum, pH 7.0) and with 0–0.5 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TNR-25 belonged to the genus and its closest neighbour was IMCC1713 with 98.1 % sequence similarity. The major fatty acids (>10 %) of strain TNR-25 were summed feature 3 (comprising Cω7 and/or Cω6) and C. The major cellular hydroxy fatty acids were C 3-OH and C 3-OH. The isoprenoid quinone was Q-8 and the DNA G+C content was 69.6 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, diphosphatidylglycerol and several uncharacterized phospholipids. The DNA–DNA relatedness between strain TNR-25 and IMCC1713 was about 30.6–35.5 %. On the basis of the genotypic and phenotypic data, strain TNR-25 represents a novel species in the genus for which the name sp. nov. is proposed; the type strain is TNR-25 ( = BCRC 80211 = LMG 25721).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034884-0
2012-05-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1048.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034884-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47:249–251 [View Article][PubMed]
    [Google Scholar]
  2. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I. 2005; Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096 [View Article][PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N. 1994; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology pp. 137–154 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  7. Embley T. M., Wait R. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp. 121–161 Edited by Goodfellow M., O’Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Garrity G. M., Bell J. A., Lilburn T. 2005; Order I. Burkholderiales ord. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C pp. 575–763 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  12. Gomila M., Bowien B., Falsen E., Moore E. R., Lalucat J. 2008; Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended description of the genus Roseateles . Int J Syst Evol Microbiol 58:6–11 [View Article][PubMed]
    [Google Scholar]
  13. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  14. Kalmbach S., Manz W., Wecke J., Szewzyk U. 1999; Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 49:769–777 [View Article][PubMed]
    [Google Scholar]
  15. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  16. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  18. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [View Article][PubMed]
    [Google Scholar]
  19. Malmqvist A., Welander T., Moore E., Ternstrom A., Molin G., Stenstrom I. 1994; Ideonella dechloratans, gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 17:58–64 [View Article]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  21. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Nokhal T.-H., Schlegel H. G. 1983; Taxonomic study of Paracoccus denitrificans.. Int J Syst Bacteriol 33:26–37 [View Article]
    [Google Scholar]
  23. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  24. Ramana Ch. V., Sasikala Ch., Arunasri K., Anil Kumar P., Srinivas T. N., Shivaji S., Gupta P., Süling J., Imhoff J. F. 2006; Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int J Syst Evol Microbiol 56:2157–2164 [View Article][PubMed]
    [Google Scholar]
  25. Rapala J., Berg K. A., Lyra C., Niemi R. M., Manz W., Suomalainen S., Paulin L., Lahti K. 2005; Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 55:1563–1568 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  27. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI Inc.;
    [Google Scholar]
  28. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Song J., Oh H.-M., Lee J.-S., Woo S.-B., Cho J.-C. 2009; Inhella inkyongensis gen. nov., sp. nov., a new freshwater bacterium in the order Burkholderiales . J Microbiol Biotechnol 19:5–10[PubMed]
    [Google Scholar]
  30. Spring S. 2002; The genera Leptothrix and Sphaerotilus . In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn. p. 39 Edited by Dworkin M., Schleifer K. H., Stackebrandt E. New York: Springer-Verlag;
    [Google Scholar]
  31. Spring S., Kampfer P., Ludwig W., Schleifer K. H. 1996; Polyphasic characterization of the genus Leptothrix: new descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend.. Syst Appl Microbiol 19:634–643 [View Article]
    [Google Scholar]
  32. Suyama T., Shigematsu T., Takaichi S., Nodasaka Y., Fujikawa S., Hosoya H., Tokiwa Y., Kanagawa T., Hanada S. 1999; Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the beta-subclass of the Proteobacteria . Int J Syst Bacteriol 49:449–457 [View Article][PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  35. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  36. Willems A., Gillis M. 2005; Family IV. Comamonadaceae Willems, De Ley, Gillis and Kersters 1991a, 447VP . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C pp. 686–763 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  37. Willems A., Gillis M., De Ley J. 1991; Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus . Int J Syst Bacteriol 41:65–73 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034884-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034884-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error