1887

Abstract

The first alkaliphilic obligately anaerobic hydrogenotrophic homoacetogenic bacterium, strain Z-7100, was isolated from sediments of the soda-depositing soda lake Tanatar III (Altay, Russia). Cells were thin, flexible rods, motile, Gram-negative and spore-forming. The organism was an obligate alkaliphile, growing at pH 8.5 to 10.5, with optimum growth at pH 8.8–9.3, and it grew in soda brines containing 1.9–4.7 M total Na (optimum at 2.8–3.3 M). It exhibited an obligate dependence upon sodium carbonate but not upon chloride ions with an NaCl range for growth of 0–14 % (w/v) and an optimum at 7.0–8.5 % (w/v). The isolate was mesophilic and grew at temperatures from 25 to 45 °C, with an optimum at 40 °C. An H+CO mixture, ethanol, pyruvate and lactate were utilized with the formation of acetate as the sole metabolic product. Carbohydrates and amino acids did not support growth. The isolate had a respiratory type of metabolism, reducing , SeO or anthraquinone-2,6-disulfonate (as electron acceptors with ethanol as an electron donor). It was able to grow chemolithotrophically on H+CO in medium supplemented with a vitamin solution only. The major cellular fatty acids were the saturated fatty acids anteiso-C, C and C and the aldehydes C, C and anteiso-C. The DNA G+C content of the isolate was 32.0 mol%. 16S rRNA gene sequence analysis showed that strain Z-7100 is a member of the order and represents a new branch within the family , clustering with the type strain of (92.9 % gene sequence similarity). On the basis of its physiological characteristics and phylogenetic position, the isolate is considered to represent a novel species in a new genus within the family The name gen. nov., sp. nov. is proposed. The type strain of the type species is Z-7100 ( = DSM 24880 = VKM B-2667).

Funding
This study was supported by the:
  • Presidium RAS ‘The origin of life and evolution of geo-biological systems’ (Award #02.740.11.0023)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034363-0
2012-07-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1666.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034363-0&mimeType=html&fmt=ahah

References

  1. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [View Article][PubMed]
    [Google Scholar]
  2. Drake H. L., Gößner A. S., Daniel S. L. 2008; Old acetogens, new light. Ann N Y Acad Sci 1125:100–128 [View Article][PubMed]
    [Google Scholar]
  3. Duckworth A. W., Grant W. D., Jones B. E., van Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [View Article]
    [Google Scholar]
  4. Grant W. D., Mwatha W. E., Jones B. E. 1990; Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–269 [View Article]
    [Google Scholar]
  5. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  6. Issatchenko B. L. 1951; Chloride, sulfate and soda lakes of the Kulundinskaya steppe and the biogenic processes therein. In Izbrannye Trudy (Selected Works of B. L. Issatchenko) pp. 143–162 Moscow: Akad Nauk SSSR;
    [Google Scholar]
  7. Jones B. E., Grant W. D., Duckworth A. W., Owenson G. G. 1998; Microbial diversity of soda lakes. Extremophiles 2:191–200 [View Article][PubMed]
    [Google Scholar]
  8. Kevbrin V. V., Zavarzin G. A. 1992; The effect of sulfur compounds on growth of halophilic the homoacetic bacterium Acetohalobium arabaticum . Microbiology (English translation of Microbiologiia) 61:563–567
    [Google Scholar]
  9. Kevbrin V. V., Zhilina T. N., Zavarzin G. A. 1995; Physiology of homoacetic bacterium Acetohalobium arabaticum . Microbiology (English translation of Microbiologiia) 64:134–138
    [Google Scholar]
  10. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  11. Lovley D. R., Phillips E. J. 1986; Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Appl Environ Microbiol 52:751–757[PubMed]
    [Google Scholar]
  12. Marusina A. I., Boulygina E. S., Kuznetsov B. B., Tourova T. P., Kravchenko I. K., Gal’chenko V. F. 2001; A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Microbiology (English translation of Microbiologiia) 70:73–78 [View Article]
    [Google Scholar]
  13. Oren A. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348[PubMed]
    [Google Scholar]
  14. Oren A. 2000; The order Halanaerobiales . In The Prokaryotes, 3rd edn. vol. 3 pp. 113–164 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  15. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516 [View Article][PubMed]
    [Google Scholar]
  16. Pikuta E. V., Zhilina T. N., Zavarzin G. A., Kostrikina N. A., Osipov G. A., Rainey F. A. 1998; Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology (English translation of Microbiologiia) 67:105–113
    [Google Scholar]
  17. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Cleland D., Krader P. 2003; Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332 [View Article][PubMed]
    [Google Scholar]
  18. Rainey F. A., Zhilina T. N., Boulygina E. S., Stackebrandt E., Tourova T. P., Zavarzin G. A. 1995; The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov., and further taxonomic rearrangements at the genus and species level. Anaerobe 1:185–199 [View Article][PubMed]
    [Google Scholar]
  19. Rees H. C., Grant W. D., Jones B. E., Heaphy S. 2004; Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71 [View Article][PubMed]
    [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  21. Sorokin D. Y., Kuenen J. G. 2005a; Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702 [View Article][PubMed]
    [Google Scholar]
  22. Sorokin D. Yu., Kuenen J. G. 2005b; Alkaliphilic chemolithotrophs from soda lakes. FEMS Microbiol Rev 52:287–295 [View Article]
    [Google Scholar]
  23. Sorokin D. Yu., Tourova T. P., Henstra A. M., Stams A. J. M., Galinski E. A., Muyzer G. 2008a; Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453 [View Article][PubMed]
    [Google Scholar]
  24. Sorokin D. Yu., Tourova T. P., Mußmann M., Muyzer G. 2008b; Dethiobacter alkaliphilus gen. nov., sp. nov. and Desulfurivibrio alkaliphilus gen. nov., sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431–439 [View Article][PubMed]
    [Google Scholar]
  25. Switzer Blum J. S., Stolz J. F., Oren A., Oremland R. S. 2001; Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 175:208–219 [View Article][PubMed]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  27. Tindall B. J. 1988; Prokaryotic life in the alkaline, saline, athalassic environment. In Halophilic Bacteria vol. 1 pp. 31–67 Edited by Rodriguez-Valera F. Boca Raton, FL: CRC Press Inc;
    [Google Scholar]
  28. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [View Article][PubMed]
    [Google Scholar]
  29. Van de Peer Y., De Wachter R. 1994; TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570[PubMed]
    [Google Scholar]
  30. Winogradsky Institute of Microbiology 2007; Proceedings of the Winogradsky Institute of Microbiology (Winogradsky Institute of Microbiology RAS-Moscow: Nauka, 1951). In Alkaliphilic Microbial Communities vol. XIV: pp. 396 Edited by Gal’chenko V. F. Moscow: Nauka; (in Russian)
    [Google Scholar]
  31. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  32. Zavarzin G. A. 1993; Epicontinental soda lakes are probable relict biotopes of terrestrial biota formation. Microbiology (English translation of Microbiologiia) 62:473–479
    [Google Scholar]
  33. Zavarzin G. A., Zhilina T. N. 2000; Anaerobic chemotrophic alkaliphiles. In Journey to Diverse Microbial Worlds pp. 191–208 Edited by Seckbach J. Dordrecht: Kluwer Academic;
    [Google Scholar]
  34. Zavarzin G. A., Zhilina T. N., Pikuta E. V. 1996; Secondary anaerobes in haloalkaliphi1ic communities of Tuva Lakes. Microbiology (English translation of Microbiologiia) 65:480–486
    [Google Scholar]
  35. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. 1999; The alkaliphilic microbial community and its functional diversity. Microbiology (English translation of Microbiologiia) 68:503–521
    [Google Scholar]
  36. Zavarzina D. G., Kolganova T. V., Boulygina E. S., Kostrikina N. A., Tourova T. P., Zavarzin G. A. 2006; Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiology (English translation of Microbiologiia) 78:673–682 [View Article]
    [Google Scholar]
  37. Zavarzina D. G., Tourova T. P., Kolganova T. V., Boulygina E. S., Zhilina T. N. 2009; Description of Anaerobacillus alkalilacustre gen. nov., sp. nov. – strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov.. Microbiology (English translation of Microbiologiia) 78:723–731 [View Article]
    [Google Scholar]
  38. Zhilina T. N., Zavarzin G. A. 1990; A new extremely halophilic homoacetogenic bacterium Acetohalobium arabaticum gen. nov., sp. nov.. Dokl Akad Nauk SSSR 311:745–747 (in Russian)
    [Google Scholar]
  39. Zhilina T. N., Zavarzin G. A. 1994; Alkaliphilic anaerobic community at pH10. Curr Microbiol 29:109–112 [View Article]
    [Google Scholar]
  40. Zhilina T. N., Zavarzin G. A., Detkova E. N., Rainey F. A. 1996; Natroniella acetigena gen. nov., sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales . Curr Microbiol 32:320–326 [View Article][PubMed]
    [Google Scholar]
  41. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149 [View Article][PubMed]
    [Google Scholar]
  42. Zhilina T. N., Detkova E. N., Rainey F. A., Osipov G. A., Lysenko A. M., Kostrikina N. A., Zavarzin G. A. 1998; Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe. Curr Microbiol 37:177–185 [View Article][PubMed]
    [Google Scholar]
  43. Zhilina T. N., Zavarzina D. G., Kuever J., Lysenko A. M., Zavarzin G. A. 2005a; Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55:1001–1006 [View Article][PubMed]
    [Google Scholar]
  44. Zhilina T. N., Zavarzina D. G., Kolganova T. V., Turova T. P., Zavarzin G. A. 2005b; “Candidatus Contubernalis alkalaceticum”, an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum . Microbiology (English translation of Microbiologiia) 74:695–703 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034363-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034363-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error