1887

Abstract

The filamentous cyanobacterial genus gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll ), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25–80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus , this group has often been incorrectly cited in the literature. We here describe two species of the genus : sp. nov. (type species of the genus) with 3L as the nomenclature type, and comb. nov. with PNG5-198 as the nomenclature type.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033761-0
2012-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1171.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033761-0&mimeType=html&fmt=ahah

References

  1. Boyer S. L., Flechtner V. R., Johansen J. R.. ( 2001;). Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. . Mol Biol Evol 18:, 1057–1069. [CrossRef][PubMed]
    [Google Scholar]
  2. Cannone J. J., Subramanian S., Schnare M. N., Collett J. R., D’Souza L. M., Du Y., Feng B., Lin N., Madabusi L. V.. & other authors ( 2002;). The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. . BMC Bioinformatics 3:, 2. [CrossRef][PubMed]
    [Google Scholar]
  3. Casamatta D. A., Johansen J. R., Vis M. L., Broadwater S. T.. ( 2005;). Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). . J Phycol 41:, 421–438. [CrossRef]
    [Google Scholar]
  4. Castenholz R. W.. ( 1988;). Culturing of cyanobacteria. . Methods Enzymol 167:, 68–93.
    [Google Scholar]
  5. Castenholz R. W.. ( 2001;). Phylum BX. Cyanobacteria oxygenic photosynthetic bacteria. . In Bergey’s Manual of Systematic Bacteriology, pp. 473–599. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  6. Engene N., Coates R. C., Gerwick W. H.. ( 2010;). 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. . J Phycol 46:, 591–601. [CrossRef]
    [Google Scholar]
  7. Engene N., Choi H., Esquenazi E., Rottacker E. C., Ellisman M. H., Dorrestein P. C., Gerwick W. H.. ( 2011;). Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. . Environ Microbiol 13:, 1601–1610. [CrossRef][PubMed]
    [Google Scholar]
  8. Golubic S., Abed R. M. M., Palińska K., Pauillac S., Chinain M., Laurent D.. ( 2010;). Marine toxic cyanobacteria: diversity, environmental responses and hazards. . Toxicon 56:, 836–841. [CrossRef][PubMed]
    [Google Scholar]
  9. Gugger M., Molica R., Le Berre B., Dufour P., Bernard C., Humbert J.-F.. ( 2005;). Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents. . Appl Environ Microbiol 71:, 1097–1100. [CrossRef][PubMed]
    [Google Scholar]
  10. Hoffmann L., Demoulin V.. ( 1991;). Marine cyanophyceae of Papua New Guinea. II. Lyngbya bouillonii sp. nov., a remarkable tropical reef-inhabiting blue-green alga. . Belg J Bot 124:, 82–88.
    [Google Scholar]
  11. Jones A. C., Monroe E. A., Podell S., Hess W. R., Klages S., Esquenazi E., Niessen S., Hoover H., Rothmann M.. & other authors ( 2011;). Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. . Proc Natl Acad Sci U S A 108:, 8815–8820. [CrossRef][PubMed]
    [Google Scholar]
  12. Katoh K., Toh H.. ( 2008;). Recent developments in the MAFFT multiple sequence alignment program. . Brief Bioinform 9:, 286–298. [CrossRef][PubMed]
    [Google Scholar]
  13. Liu L., Rein K. S.. ( 2010;). New peptides isolated from Lyngbya species: a review. . Mar Drugs 8:, 1817–1837. [CrossRef][PubMed]
    [Google Scholar]
  14. Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M. M.. ( 1999;). Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. . FEMS Microbiol Lett 172:, 15–21. [CrossRef][PubMed]
    [Google Scholar]
  15. Posada D.. ( 2008;). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef][PubMed]
    [Google Scholar]
  16. Ronquist F., Huelsenbeck J. P.. ( 2003;). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef][PubMed]
    [Google Scholar]
  17. Sharp K., Arthur K. E., Gu L., Ross C., Harrison G., Gunasekera S. P., Meickle T., Matthew S., Luesch H.. & other authors ( 2009;). Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. . Appl Environ Microbiol 75:, 2879–2888. [CrossRef][PubMed]
    [Google Scholar]
  18. Tandeau de Marsac N., Houmard J.. ( 1988;). Complementary chromatic adaption: physiological conditions and action spectra. . Methods Enzymol 167:, 318–328. [CrossRef]
    [Google Scholar]
  19. Tidgewell K., Clark B. R., Gerwick W. H.. ( 2010;). The natural products chemistry of cyanobacteria. . In Comprehensive Natural Products II Chemistry and Biology, vol. 2, pp. 141–188. Edited by Mander L., Lui H.-W... Oxford:: Elsevier;. [CrossRef]
    [Google Scholar]
  20. Zwickl D. J.. ( 2006;). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas at Austin.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033761-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033761-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error