1887

Abstract

The filamentous cyanobacterial genus gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll ), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25–80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus , this group has often been incorrectly cited in the literature. We here describe two species of the genus : sp. nov. (type species of the genus) with 3L as the nomenclature type, and comb. nov. with PNG5-198 as the nomenclature type.

Funding
This study was supported by the:
  • , Sea Grant Program , (Award R/NMP-103EPD)
  • , Ministry of Education of the Czech Republic , (Award MSM6007665801)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033761-0
2012-05-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1171.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033761-0&mimeType=html&fmt=ahah

References

  1. Boyer S. L., Flechtner V. R., Johansen J. R. 2001; Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069 [CrossRef][PubMed]
    [Google Scholar]
  2. Cannone J. J., Subramanian S., Schnare M. N., Collett J. R., D’Souza L. M., Du Y., Feng B., Lin N., Madabusi L. V. other authors 2002; The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2 [CrossRef][PubMed]
    [Google Scholar]
  3. Casamatta D. A., Johansen J. R., Vis M. L., Broadwater S. T. 2005; Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438 [CrossRef]
    [Google Scholar]
  4. Castenholz R. W. 1988; Culturing of cyanobacteria. Methods Enzymol 167:68–93
    [Google Scholar]
  5. Castenholz R. W. 2001; Phylum BX. Cyanobacteria oxygenic photosynthetic bacteria. In Bergey’s Manual of Systematic Bacteriology pp. 473–599 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer; [CrossRef]
    [Google Scholar]
  6. Engene N., Coates R. C., Gerwick W. H. 2010; 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya . J Phycol 46:591–601 [CrossRef]
    [Google Scholar]
  7. Engene N., Choi H., Esquenazi E., Rottacker E. C., Ellisman M. H., Dorrestein P. C., Gerwick W. H. 2011; Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya . Environ Microbiol 13:1601–1610 [CrossRef][PubMed]
    [Google Scholar]
  8. Golubic S., Abed R. M. M., Palińska K., Pauillac S., Chinain M., Laurent D. 2010; Marine toxic cyanobacteria: diversity, environmental responses and hazards. Toxicon 56:836–841 [CrossRef][PubMed]
    [Google Scholar]
  9. Gugger M., Molica R., Le Berre B., Dufour P., Bernard C., Humbert J.-F. 2005; Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents. Appl Environ Microbiol 71:1097–1100 [CrossRef][PubMed]
    [Google Scholar]
  10. Hoffmann L., Demoulin V. 1991; Marine cyanophyceae of Papua New Guinea. II. Lyngbya bouillonii sp. nov., a remarkable tropical reef-inhabiting blue-green alga. Belg J Bot 124:82–88
    [Google Scholar]
  11. Jones A. C., Monroe E. A., Podell S., Hess W. R., Klages S., Esquenazi E., Niessen S., Hoover H., Rothmann M. other authors 2011; Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula . Proc Natl Acad Sci U S A 108:8815–8820 [CrossRef][PubMed]
    [Google Scholar]
  12. Katoh K., Toh H. 2008; Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu L., Rein K. S. 2010; New peptides isolated from Lyngbya species: a review. Mar Drugs 8:1817–1837 [CrossRef][PubMed]
    [Google Scholar]
  14. Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M. M. 1999; Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21 [CrossRef][PubMed]
    [Google Scholar]
  15. Posada D. 2008; jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256 [CrossRef][PubMed]
    [Google Scholar]
  16. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef][PubMed]
    [Google Scholar]
  17. Sharp K., Arthur K. E., Gu L., Ross C., Harrison G., Gunasekera S. P., Meickle T., Matthew S., Luesch H. other authors 2009; Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol 75:2879–2888 [CrossRef][PubMed]
    [Google Scholar]
  18. Tandeau de Marsac N., Houmard J. 1988; Complementary chromatic adaption: physiological conditions and action spectra. Methods Enzymol 167:318–328 [CrossRef]
    [Google Scholar]
  19. Tidgewell K., Clark B. R., Gerwick W. H. 2010; The natural products chemistry of cyanobacteria. In Comprehensive Natural Products II Chemistry and Biology vol. 2 pp. 141–188 Edited by Mander L., Lui H.-W. Oxford: Elsevier; [CrossRef]
    [Google Scholar]
  20. Zwickl D. J. 2006 Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion PhD Thesis The University of Texas at Austin.;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033761-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033761-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error