1887

Abstract

Strains of Gram-negative anaerobic rods were isolated from chinchilla () faeces, and three strains, ST161, ST33 and ST37, were investigated taxonomically. Based on phylogenetic analyses and specific phenotypic characteristics, the three strains were allocated to the genus . Phylogenetic analyses of their 16S rRNA gene sequences revealed that strain ST161 formed a distinct line of descent, with highest sequence similarity to strain ST33 (98.7 %) and JCM 16102 (97.7 %). High levels of DNA–DNA relatedness (79–89 %) were found between strains ST161 and ST33, but low levels were found between strain ST161 and JCM 16102 (33–37 %) and between strain ST33 and JCM 16102 (33–37 %). These data clearly indicated that strains ST161 and ST33 represent a single novel species. 16S rRNA gene sequence analyses showed that strain ST37 also formed a distinct line of descent, with highest sequence similarity to JCM 10556 (96.5 %) and JCM 9498 (95.6 %). Analysis of gene sequences also supported these relationships. Based on phenotypic and phylogenetic characteristics, two novel species, sp. nov. and sp. nov., are thus proposed. The type strains of and are ST161 ( = JCM 17103 = CCUG 60872) and ST37 ( = JCM 17102 = CCUG 60873), respectively. The DNA G+C contents of strains ST161 and ST37 were 45.7 and 41.0 mol%, respectively.

Funding
This study was supported by the:
  • IFO (Institute for Fermentation, Osaka, Japan) (Award 2009-2011)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032706-0
2012-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/5/1145.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032706-0&mimeType=html&fmt=ahah

References

  1. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y. 2006; Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:151–154 [View Article][PubMed]
    [Google Scholar]
  2. Clavel T., Saalfrank A., Charrier C., Haller D. 2010; Isolation of bacteria from mouse caecal samples and description of Bacteroides sartorii sp. nov.. Arch Microbiol 192:427–435 [View Article][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  4. Johnson J. L., Moore W. E. C., Moore L. V. H. 1986; Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. isolated from human feces. Int J Syst Bacteriol 36:499–501 [View Article]
    [Google Scholar]
  5. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  6. Kitahara M., Sakamoto M., Ike M., Sakata S., Benno Y. 2005; Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55:2143–2147 [View Article][PubMed]
    [Google Scholar]
  7. Kitahara M., Tsuchida S., Kawasumi K., Amao H., Sakamoto M., Benno Y., Ohkuma M. 2011; Bacteroides chinchillae sp. nov. and Bacteroides rodentium sp. nov., isolated from chinchilla (Chinchilla lanigera) faeces. Int J Syst Evol Microbiol 61:877–881 [View Article][PubMed]
    [Google Scholar]
  8. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  9. Miyamoto Y., Itoh K. 2000; Bacteroides acidifaciens sp. nov., isolated from the caecum of mice. Int J Syst Evol Microbiol 50:145–148 [View Article][PubMed]
    [Google Scholar]
  10. Nishiyama T., Ueki A., Kaku N., Watanabe K., Ueki K. 2009; Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:1901–1907 [View Article][PubMed]
    [Google Scholar]
  11. Robert C., Chassard C., Lawson P. A., Bernalier-Donadille A. 2007; Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol 57:1516–1520 [View Article][PubMed]
    [Google Scholar]
  12. Saito H., Miura K. I. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  14. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:841–849 [View Article][PubMed]
    [Google Scholar]
  15. Sakamoto M., Suzuki N., Benno Y. 2010; hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes . Int J Syst Evol Microbiol 60:2984–2990 [View Article][PubMed]
    [Google Scholar]
  16. Shah H. N. 1992; The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn. pp. 3593–3607 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer; [CrossRef]
    [Google Scholar]
  17. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48:75–87 [View Article][PubMed]
    [Google Scholar]
  18. Shah H. N., Collins M. D. 1983; Genus Bacteroides. A chemotaxonomical perspective. J Appl Bacteriol 55:403–416 [View Article][PubMed]
    [Google Scholar]
  19. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  20. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  22. Ueki A., Abe K., Kaku N., Watanabe K., Ueki K. 2008; Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 58:346–352 [View Article][PubMed]
    [Google Scholar]
  23. Ueki A., Abe K., Ohtaki Y., Kaku N., Watanabe K., Ueki K. 2011; Bacteroides paurosaccharolyticus sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. Int J Syst Evol Microbiol 61:448–453 [View Article][PubMed]
    [Google Scholar]
  24. Watanabe Y., Nagai F., Morotomi M., Sakon H., Tanaka R. 2010; Bacteroides clarus sp. nov., Bacteroides fluxus sp. nov. and Bacteroides oleiciplenus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 60:1864–1869 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032706-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032706-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error