1887

Abstract

A Gram-positive actinobacterium, strain IV-75, was isolated by using R2A agar from the ultrapure water system of a power plant in Hungary. The strain exhibited a rod–coccus cell cycle, and was strictly aerobic, non-motile, catalase-positive and oxidase-negative. 16S rRNA gene sequence analysis revealed that strain IV-75 belonged to the suborder and clustered with members of the family . Its closest phylogenetic neighbour was CCUG 47306 (94.3 % 16S rRNA gene sequence similarity). The peptidoglycan of strain IV-75 contained -diaminopimelic acid and MK-10(H) was the major menaquinone. The polar lipid pattern contained phosphatidylglycerol, two unidentified phospholipids, one glycolipid and several other lipid components. The major fatty acids were anteiso-C, Cω9 and C. Based on the moderate levels of 16S rRNA gene sequence similarity to all members of the family and the unique combination of chemotaxonomic characteristics, strain IV-75 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is IV-75 ( = DSM 21674 = NCAIM B 02333).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032672-0
2012-03-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/556.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032672-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Bohus V., Tóth E. M., Székely A. J., Makk J., Baranyi K., Patek G., Schunk J., Márialigeti K. 2010; Microbiological investigation of an industrial ultra pure supply water plant using cultivation-based and cultivation-independent methods. Water Res 44:6124–6132 [CrossRef][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  5. Claus M. 1992; A standardised Gram staining procedure. World J Microbiol Biotechnol 8:451–452 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  7. Collins M. D., Routh J., Saraswathy A., Lawson P. A., Schumann P., Welinder-Olsson C., Falsen E. 2004; Arsenicicoccus bolidensis gen. nov., sp. nov., a novel actinomycete isolated from contaminated lake sediment. Int J Syst Evol Microbiol 54:605–608 [CrossRef][PubMed]
    [Google Scholar]
  8. Costerton J. W., Cheng K.-J., Geesey G. G., Ladd T. I. M., Nickel J. C., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464 [CrossRef][PubMed]
    [Google Scholar]
  9. Cowan S. T., Steel K. J. 1974 Manual of Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  10. Embley T. M., Wait R. 1994; Structural lipids of Eubacteria . In Chemical Methods in Prokaryotic Systematics pp. 141–147 Edited by Goodfellow M., O’Donnell A. G. New York: Wiley;
    [Google Scholar]
  11. Euzéby J. P. 1997; List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789 [CrossRef]
    [Google Scholar]
  13. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  14. Groth I., Schumann P., Weiss N., Schuetze B., Augsten K., Stackebrandt E. 2001; Ornithinimicrobium humiphilum gen. nov., sp. nov., a novel soil actinomycete with l-ornithine in the peptidoglycan. Int J Syst Evol Microbiol 51:81–87[PubMed]
    [Google Scholar]
  15. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Hamada M., Iino T., Iwami T., Tamura T., Harayama S., Suzuki K. 2009; Arsenicicoccus piscis sp. nov., a mesophilic Actinobacterium isolated from the intestinal tract of a fish. Actinomycetologica 23:40–45 [CrossRef]
    [Google Scholar]
  17. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  18. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Liu X.-Y., Wang B.-J., Jiang C.-Y., Liu S.-J. 2008; Ornithinimicrobium pekingense sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58:116–119 [CrossRef][PubMed]
    [Google Scholar]
  21. Makk J., Ács É. 1996; Interaction between diatoms and bacteria in the biofilm of the Danube river. In Proceedings of the 31st International Conference of IAD pp. 109–114 Vienna: IAD;
    [Google Scholar]
  22. Mayilraj S., Saha P., Suresh K., Saini H. S. 2006; Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56:1657–1661 [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  25. Murray R. G. E., Doetsch R. N., Robinow F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Patterson M. K., Husted G. R., Rutkowski A., Mayette D. C. 1991; Isolation, identification and microscopic properties of biofilms in high-purity water distribution systems. Ultrapure Water 8:18–23
    [Google Scholar]
  27. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef][PubMed]
    [Google Scholar]
  28. Poindexter J. S. 1981; Oligotrophy: fast and famine existence. Adv Microb Ecol 5:63–89
    [Google Scholar]
  29. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  30. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7[PubMed]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  33. Schumann P., Kämpfer P., Busse H.-J., Evtushenko L. I. Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes 2009; Proposed minimal standards for describing new genera and species of the suborder Micrococcineae . Int J Syst Evol Microbiol 59:1823–1849 [CrossRef][PubMed]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Soini S. M., Koskinen K. T., Vilenius M. J., Puhakka J. A. 2002; Occurrence of bacteria in industrial fluid power systems. Clean Tech Env Policy 4:26–31 [CrossRef]
    [Google Scholar]
  36. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  37. Stieglmeier M., Wirth R., Kminek G., Moissl-Eichinger C. 2009; Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 75:3484–3491 [CrossRef][PubMed]
    [Google Scholar]
  38. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  39. Tarrand J. J., Gröschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774[PubMed]
    [Google Scholar]
  40. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  41. Traiwan J., Park M.-H., Kim W. 2011; Serinicoccus chungangensis sp. nov., isolated from tidal flat sediment, and emended description of the genus Serinicoccus . Int J Syst Evol Microbiol 61:1299–1303 [CrossRef]
    [Google Scholar]
  42. Xiao J., Luo Y., Xie S., Xu J. 2011; Serinicoccus profundi sp. nov., an actinomycete isolated from deep-sea sediment, and emended description of the genus Serinicoccus . Int J Syst Evol Microbiol 61:16–19 [CrossRef][PubMed]
    [Google Scholar]
  43. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Appl Microbiol 18:399–416 [CrossRef]
    [Google Scholar]
  44. Yi H., Schumann P., Sohn K., Chun J. 2004; Serinicoccus marinus gen. nov., sp. nov., a novel actinomycete with l-ornithine and l-serine in the peptidoglycan. Int J Syst Evol Microbiol 54:1585–1589 [CrossRef][PubMed]
    [Google Scholar]
  45. Zhi X.-Y., Li W.-J., Stackebrandt E. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032672-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032672-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error