1887

Abstract

A novel moderately thermophilic, anaerobic, ethanol-producing bacterial strain, 45B, was isolated from a mixed sediment water sample collected from a hot spring at Potosi, Bolivia. The cells were straight to slightly curved rods approximately 2.5 µm long and 0.5 µm wide. The strain was Gram-stain-variable, spore-forming and monotrichously flagellated. Growth of the strain was observed at 45–65 °C and pH 5.5–8.0, with optima of 60 °C and pH 6.5. The substrates utilized by strain 45B were xylose, cellobiose, glucose, arabinose, sucrose, lactose, maltose, fructose, galactose, mannose, glycerol, xylan, carboxymethylcellulose and yeast extract. The main fermentation product from xylose and cellobiose was ethanol (0.70 and 0.45 g ethanol per gram of consumed sugar, respectively). Acetate, lactate, propionate, carbon dioxide and hydrogen were also produced in minor quantities. 1,3-Propanediol was produced when glycerol-containing medium was supplemented with yeast extract. The major cellular fatty acids were anteiso-C, C, iso-C, C, iso-C, C and C. The polar lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminoglycolipid and 15 other unidentified lipids were predominant. The DNA G+C content of strain 45B was 32.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity revealed that strain 45B is located within the Gram-type positive branch of the phylogenetic tree. On the basis of morphological and physiological properties and phylogenetic analysis, strain 45B represents a novel species, for which the name sp. nov. is proposed; the type strain is 45B ( = DSM 22065 = CCUG 57396).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032664-0
2012-07-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1679.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032664-0&mimeType=html&fmt=ahah

References

  1. Angelidaki I., Petersen S. P., Ahring B. K.. ( 1990;). Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. . Appl Microbiol Biotechnol 33:, 469–472. [CrossRef][PubMed]
    [Google Scholar]
  2. Chrisostomos S., Patel B. K. C., Dwivedi P. P., Denman S. E.. ( 1996;). Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated non volcanically heated waters of an Indian artesian aquifer. . Int J Syst Bacteriol 46:, 497–501. [CrossRef]
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  4. Cook J., Beyea J.. ( 2000;). Bioenergy in the United States: progress and possibilities. . Biomass Bioenergy 18:, 441–455. [CrossRef]
    [Google Scholar]
  5. Cook G. M., Morgan H. W.. ( 1994;). Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. . Appl Microbiol Biotechnol 41:, 84–89. [CrossRef]
    [Google Scholar]
  6. Demain A. L., Newcomb M., Wu J. H.. ( 2005;). Cellulase, clostridia, and ethanol. . Microbiol Mol Biol Rev 69:, 124–154. [CrossRef][PubMed]
    [Google Scholar]
  7. Dien B. S., Cotta M. A., Jeffries T. W.. ( 2003;). Bacteria engineered for fuel ethanol production: current status. . Appl Microbiol Biotechnol 63:, 258–266. [CrossRef][PubMed]
    [Google Scholar]
  8. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Microbiology, pp. 21–33. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood A., Krieg N. R., Phillips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Doi R. H.. ( 2003;). Microbial conversion of corn stalks to riches. . J Bacteriol 185:, 701–702. [CrossRef][PubMed]
    [Google Scholar]
  10. Engle M., Li Y., Rainey F., DeBlois S., Mai V., Reichert A., Mayer F., Messner P., Wiegel J.. ( 1996;). Thermobrachium celere gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. . Int J Syst Bacteriol 46:, 1025–1033. [CrossRef][PubMed]
    [Google Scholar]
  11. Galbe M., Zacchi G.. ( 2002;). A review of the production of ethanol from softwood. . Appl Microbiol Biotechnol 59:, 618–628. [CrossRef][PubMed]
    [Google Scholar]
  12. Herrero A. A., Gomez R. F., Roberts M. F.. ( 1982;). Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum. . Biochim Biophys Acta 693:, 195–204. [CrossRef][PubMed]
    [Google Scholar]
  13. Johnston N. C., Goldfine H.. ( 1983;). Lipid composition in the classification of the butyric acid-producing clostridia. . J Gen Microbiol 129:, 1075–1081.[PubMed]
    [Google Scholar]
  14. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  15. Miller L., Berger T.. ( 1985;). Bacteria Identification by Chromatography of Whole Cell Fatty Acids. Hewlett-Packard Application Note 228–28. Palo Alto, CA:: Hewlett-Packard Co;.
    [Google Scholar]
  16. Ogg C. D., Patel B. K.. ( 2009;). Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. . Int J Syst Evol Microbiol 59:, 95–101. [CrossRef][PubMed]
    [Google Scholar]
  17. Olsson L., Hahn-Hagerdal B.. ( 1996;). Fermentation of lignocellulosic hydrolysates for ethanol production. . Enzyme Microb Technol 18:, 312–331. [CrossRef]
    [Google Scholar]
  18. Parawira W., Murto M., Read J. S., Mattiasson B.. ( 2004;). Volatile fatty acids production during anaerobic mesophilic digestion of solid potato waste. . J Chem Technol Biotechnol 79:, 673–677. [CrossRef]
    [Google Scholar]
  19. Patel B. K. C., Monk C., Littleworth H., Morgan H. W., Daniel R. M.. ( 1987;). Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. . Int J Syst Bacteriol 37:, 123–126. [CrossRef]
    [Google Scholar]
  20. Plugge C. M., Zoetendal E. G., Stams A. J. M.. ( 2000;). Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. . Int J Syst Evol Microbiol 50:, 1155–1162. [CrossRef][PubMed]
    [Google Scholar]
  21. Reynolds E. S.. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef][PubMed]
    [Google Scholar]
  22. Seyfried M., Lyon D., Rainey F. A., Wiegel J.. ( 2002;). Caloramator viterbensis sp. nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in Italy. . Int J Syst Evol Microbiol 52:, 1177–1184. [CrossRef][PubMed]
    [Google Scholar]
  23. Spurr A. R.. ( 1969;). A low-viscosity epoxy resin embedding medium for electron microscopy. . J Ultrastruct Res 26:, 31–43. [CrossRef][PubMed]
    [Google Scholar]
  24. Tarlera S., Muxí L., Soubes M., Stams A. J.. ( 1997;). Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium. . Int J Syst Bacteriol 47:, 651–656. [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  26. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  27. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  29. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  30. Wheals A. E., Basso L. C., Alves D. M. G., Amorim H. V.. ( 1999;). Fuel ethanol after 25 years. . Trends Biotechnol 17:, 482–487. [CrossRef][PubMed]
    [Google Scholar]
  31. Wiegel J., Ljungdahl L. G., Demain A. L.. ( 1985;). The importance of thermophilic bacteria in biotechnology. . Crit Rev Biotechnol 3:, 39–108. [CrossRef]
    [Google Scholar]
  32. Wyman C. E.. ( 1999;). Biomass ethanol: technical progress, opportunities, and commercial challenges. . Annu Rev Energy Environ 24:, 189–226. [CrossRef]
    [Google Scholar]
  33. Yamamoto K., Murakami R., Takamura Y.. ( 1998;). Isoprenoid quinone, cellular fatty acid composition and diaminopimelic acid isomers of newly classified thermophilic anaerobic Gram-positive bacteria. . FEMS Microbiol Lett 161:, 351–358. [CrossRef]
    [Google Scholar]
  34. Zaldivar J., Nielsen J., Olsson L.. ( 2001;). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. . Appl Microbiol Biotechnol 56:, 17–34. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032664-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032664-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error