1887

Abstract

Bacteria were isolated from black lesions on shoots of European pear trees ( L.) in an orchard in Japan. Previous characterization of this novel pathogen by phenotypic and genotypic methods suggested that it should belong to the genus but might not correspond to either or . Here, phylogenetic analyses of the 16S rRNA gene, , and gene sequences indicated that it could not be assigned to any recognized species of the genus . DNA–DNA hybridization confirmed that the bacterial strains represented a novel species. The DNA G+C contents, the fatty acid profile and phenotypic characteristics resembled those previously reported for members of the genus . On the basis of these and previous results, the pathogen represents a novel species of the genus , for which the name sp. nov. (type strain: YPPS 951 = LMG 25843 = NCPPB 4475) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.032011-0
2012-08-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1799.html?itemId=/content/journal/ijsem/10.1099/ijs.0.032011-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Dye D. W. 1968; A taxonomic study of the genus Erwinia I. The ‘Amylovora’ group. N Z J Sci 11:590–607
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  5. Geider K., Auling G., Du Z., Jakovljevic V., Jock S., Völksch B. 2006; Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evol Microbiol 56:2937–2943 [View Article][PubMed]
    [Google Scholar]
  6. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [View Article][PubMed]
    [Google Scholar]
  7. Hauben L., Swings J. 2005; Genus XIII Erwinia . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2B pp. 670–679 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  8. Jobb G., von Haeseler A., Strimmer K. 2004; TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18 [View Article][PubMed]
    [Google Scholar]
  9. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [View Article]
    [Google Scholar]
  10. Kim W.-S., Gardan L., Rhim S.-L., Geider K. 1999; Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int J Syst Bacteriol 49:899–906 [View Article][PubMed]
    [Google Scholar]
  11. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of phycocyanin and fluorescin. J Lab Clin Med 44:301–307
    [Google Scholar]
  12. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  13. López M. M., Roselló M., Llop P., Ferrer S., Christen R., Gardan L. 2011; Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int J Syst Evol Microbiol 61:561–567 [View Article][PubMed]
    [Google Scholar]
  14. Matsuura T., Shinohara H., Inoue Y., Azegami K., Tsushima S., Tsukamoto T., Mizuno A. 2007; Erwinia isolates from the bacterial shoot blight of pear in Japan are closely related to Erwinia pyrifoliae based on phylogenetic analyses of gyrB and rpoD genes. J Gen Plant Pathol 73:53–58 [View Article]
    [Google Scholar]
  15. Mizuno A., Sato S., Kawai A., Nishiyama K. 2000; Taxonomic position of the causal pathogen of bacterial shoot blight of pear. J Gen Plant Pathol 66:48–58 [View Article]
    [Google Scholar]
  16. Mizuno A., Tsukamoto T., Shimizu Y., Ooya H., Matsuura T., Saito N., Sato S., Kikuchi S., Uzuki T., Azegami K. 2010; Occurrence of bacterial black shoot disease of European pear in Yamagata Prefecture. J Gen Plant Pathol 76:43–51 [View Article]
    [Google Scholar]
  17. Paisley R. 1996 MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI, Inc;
    [Google Scholar]
  18. Rhim S.-L., Völksch B., Gardan L., Paulin J.-P., Langlotz C., Kim W.-S., Geider K. 1999; Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees. Plant Pathol 48:514–520 [View Article]
    [Google Scholar]
  19. Roselló M., Peñalver J., Llop P., Gorris M. T., Cambra M., López M. M., Chartier R., García F., Montón C. 2006; Identification of an Erwinia sp. different from Erwinia amylovora and responsible for necrosis on pear blossoms. Can J Plant Pathol 28:30–41 [View Article]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sawada H., Kunugi Y., Watauchi K., Kudo A., Sato T. 2011; [Bacterial spot, a new disease of grapevine (Vitis vinifera) caused by Xanthomonas arboricola]. Jpn J Phytopathol 77:7–22 (in Japanese) [View Article]
    [Google Scholar]
  22. Van der Zwet T., Keil H. L. 1979; Fire blight: a bacterial disease of rosaceous plants. Symptomatology (chapter 4) pp. 21–26 Washington, DC: US Dept of Agriculture, Science and Education Administration;
    [Google Scholar]
  23. Wakimoto S. 1955; [Studies on multiplication of OP1 phage (Xanthomonas oryzae bacteriophage). 1. One-step growth experiment under various condition]. Sci. Bull Fac Agric Kyushu Univ 15:151–160 (in Japanese)
    [Google Scholar]
  24. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109[PubMed]
    [Google Scholar]
  25. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.032011-0
Loading
/content/journal/ijsem/10.1099/ijs.0.032011-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error