1887

Abstract

Two novel acetic acid bacteria, strains G5-1 and I5-1, were isolated from traditional kaki vinegar (produced from fruits of kaki, Thunb.), collected in Kumamoto Prefecture, Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains G5-1 and I5-1 formed a distinct subline in the genus and were closely related to DST GL01 (99.3 % 16S rRNA gene sequence similarity). The isolates showed 96–100 % DNA–DNA relatedness with each other, but <53 % DNA–DNA relatedness with closely related members of the genus . The isolates could be distinguished from closely related members of the genus by not producing 2- and 5-ketogluconic acids from glucose, producing cellulose, growing without acetic acid and with 30 % (w/v) -glucose, and producing acid from sugars and alcohols. Furthermore, the genomic DNA G+C contents of strains G5-1 and I5-1 were a little higher than those of their closest phylogenetic neighbours. On the basis of the phenotypic characteristics and phylogenetic position, strains G5-1 and I5-1 are assigned to a novel species, for which the name sp. nov. is proposed; the type strain is G5-1 ( = JCM 25156 = NRIC 0798 = LMG 26206).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031773-0
2012-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1465.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031773-0&mimeType=html&fmt=ahah

References

  1. Adachi J. , Hasegawa M. . ( 1995; ). Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino acid sites. . J Mol Evol 40:, 622–628. [CrossRef] [PubMed]
    [Google Scholar]
  2. Boesch C. , Trček J. , Sievers M. , Teuber M. . ( 1998; ). Acetobacter intermedius, sp. nov.. Syst Appl Microbiol 21:, 220–229. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brown A. J. . ( 1886; ). XLIII – On an acetic ferment which forms cellulose. . J Chem Soc Trans 49:, 432–439.[CrossRef]
    [Google Scholar]
  4. Cleenwerck I. , De Vos P. , De Vuyst L. . ( 2010; ). Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov.. Int J Syst Evol Microbiol 60:, 2277–2283. [CrossRef] [PubMed]
    [Google Scholar]
  5. De Ley J. , Frateur J. . ( 1974; ). Genus Acetobacter Beijerinck 1898, 215. . In Bergey’s Manual of Determinative Bacteriology, , 8th edn., pp. 276–278. Edited by Buchanan R. E. , Gibbons N. E. . . Baltimore:: Williams and Wilkins;.
    [Google Scholar]
  6. De Ley J. , Swings J. , Gosselé F. . ( 1984; ). Genus I. Acetobacter Beijerinck 1898 215AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 268–274. Edited by Krieg N. R. , Holt J. G. . . Baltimore:: Williams and Wilkins;.
    [Google Scholar]
  7. Dellaglio F. , Cleenwerck I. , Felis G. E. , Engelbeen K. , Janssens D. , Marzotto M. . ( 2005; ). Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. . Int J Syst Evol Microbiol 55:, 2365–2370. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  9. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  10. Franke I. H. , Fegan M. , Hayward C. , Leonard G. , Stackebrandt E. , Sly L. I. . ( 1999; ). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. . Int J Syst Bacteriol 49:, 1681–1693. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hasegawa M. , Kishino H. , Yano T. . ( 1985; ). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. . J Mol Evol 22:, 160–174. [CrossRef] [PubMed]
    [Google Scholar]
  12. Iino T. , Mori K. , Tanaka K. , Suzuki K. , Harayama S. . ( 2007; ). Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. . Int J Syst Evol Microbiol 57:, 1840–1845. [CrossRef] [PubMed]
    [Google Scholar]
  13. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  14. Lisdiyanti P. , Kawasaki H. , Seki T. , Yamada Y. , Uchimura T. , Komagata K. . ( 2000; ). Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov.. J Gen Appl Microbiol 46:, 147–165. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lisdiyanti P. , Kawasaki H. , Seki T. , Yamada Y. , Uchimura T. , Komagata K. . ( 2001; ). Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov.. J Gen Appl Microbiol 47:, 119–131. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lisdiyanti P. , Katsura K. , Potacharoen W. , Navarro R. R. , Yamada Y. , Uchimura T. , Komagata K. . ( 2003; ). Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. . Microbiol Cult Coll 19:, 91–99.
    [Google Scholar]
  17. Lisdiyanti P. , Navarro R. R. , Uchimura T. , Komagata K. . ( 2006; ). Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov.. Int J Syst Evol Microbiol 56:, 2101–2111. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  19. Navarro R. R. , Uchimura T. , Komagata K. . ( 1999; ). Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii . . J Gen Appl Microbiol 45:, 295–300. [CrossRef] [PubMed]
    [Google Scholar]
  20. Prieto C. , Jara C. , Mas A. , Romero J. . ( 2007; ). Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. . Int J Food Microbiol 115:, 348–355. [CrossRef] [PubMed]
    [Google Scholar]
  21. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  23. Sievers M. , Swings J. . ( 2005; ). Family II. Acetobacteraceae . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, pp. 41–95. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. . . New York:: Springer;.
    [Google Scholar]
  24. Sievers M. , Sellmer S. , Teuber M. . ( 1992; ). Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. . Syst Appl Microbiol 15:, 386–392. [CrossRef]
    [Google Scholar]
  25. Sokollek S. J. , Hammes W. P. . ( 1997; ). Description of a starter culture preparation for vinegar fermentation. . Syst Appl Microbiol 20:, 481–491. [CrossRef]
    [Google Scholar]
  26. Sokollek S. J. , Hertel C. , Hammes W. P. . ( 1998; ). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. . Int J Syst Bacteriol 48:, 935–940. [CrossRef] [PubMed]
    [Google Scholar]
  27. Stackebrandt E. , Ebers J. . ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  28. Suzuki R. , Zhang Y. , Iino T. , Kosako Y. , Komagata K. , Uchimura T. . ( 2010; ). Asaia astilbes sp. nov., Asaia platycodi sp. nov., and Asaia prunellae sp. nov., novel acetic acid bacteria isolated from flowers in Japan. . J Gen Appl Microbiol 56:, 339–346. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  30. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef]
    [Google Scholar]
  31. Toyosaki H. , Kojima Y. , Tsuchida T. , Hoshino K. , Yamada Y. , Yoshinaga F. . ( 1995; ). The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov.. J Gen Appl Microbiol 41:, 307–314. [CrossRef]
    [Google Scholar]
  32. Vegas C. , Mateo E. , González A. , Jara C. , Guillamón J. M. , Poblet M. , Torija M. J. , Mas A. . ( 2010; ). Population dynamics of acetic acid bacteria during traditional wine vinegar production. . Int J Food Microbiol 138:, 130–136. [CrossRef] [PubMed]
    [Google Scholar]
  33. Yamada Y. . ( 1983; ). Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less acetate-oxidizing acetic acid bacteria with the Q-10 system. . J Gen Appl Microbiol 29:, 417–420. [CrossRef]
    [Google Scholar]
  34. Yamada Y. . ( 2000; ). Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov.. Int J Syst Evol Microbiol 50:, 2225–2227. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yamada Y. , Hoshino K. , Ishikawa T. . ( 1997; ). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. . Biosci Biotechnol Biochem 61:, 1244–1251. [CrossRef] [PubMed]
    [Google Scholar]
  36. Yamada Y. , Hosono R. , Lisdyanti P. , Widyastuti Y. , Saono S. , Uchimura T. , Komagata K. . ( 1999; ). Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter . . J Gen Appl Microbiol 45:, 23–28. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031773-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031773-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error