1887

Abstract

A Gram-positive, alkaliphilic bacterium, designated strain DLS13, was isolated from Dali Lake in Inner Mongolia Autonomous Region, China. The isolate was able to grow at pH 7.5–11.0 (optimum at pH 9), in 0–8 % (w/v) NaCl (optimum at 2 %, w/v) and at 10–45 °C (optimum at 30 °C). Cells of the isolate were facultatively anaerobic, spore-forming rods with peritrichous flagella. The predominant isoprenoid quinone was MK-7 and its cell wall peptidoglycan contained -diaminopimelic acid. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were anteiso-C, anteiso-C and iso-C. The genomic DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DLS13 was a member of the genus and most closely related to DSM 15402 (96.9 % similarity). The DNA–DNA relatedness value between strain DLS13 and DSM 15402 was 38.7±1.9 %. Comparative analysis of genotypic and phenotypic features indicated that strain DLS13 represents a novel species of the genus , for which the name sp. nov. is proposed; the type strain is DLS13 ( = CGMCC 1.10369 = JCM 17097 = NBRC 107572).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031575-0
2012-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/949.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031575-0&mimeType=html&fmt=ahah

References

  1. Ash C. , Farrow J. A. E. , Wallbanks S. , Collins M. D. . ( 1991; ). Phylogenetic heterogeneity of the genus Bacillus as revealed by comparative analysis of small-subunit ribosomal-RNA sequences. . Lett Appl Microbiol 13:, 202–206. [CrossRef]
    [Google Scholar]
  2. Baesman S. M. , Stolz J. F. , Kulp T. R. , Oremland R. S. . ( 2009; ). Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. . Extremophiles 13:, 695–705. [CrossRef] [PubMed]
    [Google Scholar]
  3. Baker G. C. , Smith J. J. , Cowan D. A. . ( 2003; ). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef] [PubMed]
    [Google Scholar]
  4. Borsodi A. K. , Márialigeti K. , Szabó G. , Palatinszky M. , Pollák B. , Kéki Z. , Kovács A. L. , Schumann P. , Tóth E. M. . ( 2008; ). Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. . Int J Syst Evol Microbiol 58:, 845–851. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carrasco I. J. , Márquez M. C. , Xue Y. , Ma Y. , Cowan D. A. , Jones B. E. , Grant W. D. , Ventosa A. . ( 2007; ). Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 2084–2088. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y.-W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  7. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230.[PubMed] [CrossRef]
    [Google Scholar]
  8. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  9. Denizci A. A. , Kazan D. , Erarslan A. . ( 2010; ). Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. . Int J Syst Evol Microbiol 60:, 1590–1594. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Woods W. A. , Krieg N. R. , Philips G. B. . ( 1981; ). Manual of Methods for General Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Gregersen T. . ( 1978; ). Rapid method for distinction of Gram-negative from Gram-positive bacteria. . Appl Environ Microbiol 5:, 123–127. [CrossRef]
    [Google Scholar]
  14. Groth I. , Schumann P. , Weiss N. , Martin K. , Rainey F. A. . ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef] [PubMed]
    [Google Scholar]
  15. Horikoshi K. . ( 1999; ). Alkaliphiles: some applications of their products for biotechnology. . Microbiol Mol Biol Rev 63:, 735–750.[PubMed]
    [Google Scholar]
  16. Jones B. E. , Grant W. D. , Duckworth A. W. , Owenson G. G. . ( 1998; ). Microbial diversity of soda lakes. . Extremophiles 2:, 191–200. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kluge A. G. , Farris J. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  19. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  20. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  21. Martins R. F. , Davids W. , Al-Soud W. , Levander F. , Rådström P. , Hatti-Kaul R. . ( 2001; ). Starch-hydrolyzing bacteria from Ethiopian soda lakes. . Extremophiles 5:, 135–144. [CrossRef] [PubMed]
    [Google Scholar]
  22. Nielsen P. , Rainey F. A. , Outtrup H. , Priest F. G. , Fritze D. . ( 1994; ). Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus . . FEMS Microbiol Lett 117:, 61–65. [CrossRef]
    [Google Scholar]
  23. Nogi Y. , Takami H. , Horikoshi K. . ( 2005; ). Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. . Int J Syst Evol Microbiol 55:, 2309–2315. [CrossRef] [PubMed]
    [Google Scholar]
  24. Padan E. , Bibi E. , Ito M. , Krulwich T. A. . ( 2005; ). Alkaline pH homeostasis in bacteria: new insights. . Biochim Biophys Acta 1717:, 67–88. [CrossRef] [PubMed]
    [Google Scholar]
  25. Romano I. , Manca M. C. , Lama L. , Nicolaus B. , Gambacorta A. . ( 1993; ). Method for antibiotic assay on Sulfolobales . . Biotechnol Tech 7:, 439–440. [CrossRef]
    [Google Scholar]
  26. Romano I. , Nicolaus B. , Lama L. , Trabasso D. , Caracciolo G. , Gambacorta A. . ( 2001; ). Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense . . Syst Appl Microbiol 24:, 342–352. [CrossRef] [PubMed]
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  29. Schleifer K. H. , Kandler O. . ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  30. Smibert R. M. , Krieg N. R. . ( 1981; ). General characterization. . In Manual of Methods for General Microbiology, pp. 409–443. Edited by Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  32. Vargas V. A. , Delgado O. D. , Hatti-Kaul R. , Mattiasson B. . ( 2005; ). Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. . Int J Syst Evol Microbiol 55:, 899–902. [CrossRef] [PubMed]
    [Google Scholar]
  33. Zhang J. , Wang J. , Song F. , Fang C. , Xin Y. , Zhang Y. . ( 2011; ). Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6. . Int J Syst Evol Microbiol 61:, 1078–1083. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031575-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031575-0
Loading

Data & Media loading...

Supplements

Supplementary figures 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error