1887

Abstract

Three Gram-negative, motile and slightly curved rod-shaped bacteria, strains SUEMI03, SUEMI08 and SUEMI10, were isolated from an old volcanic mountain soil on Tenerife (Canary Islands). The three strains were related phylogenetically to . 16S rRNA gene sequence similarity was 99.2–99.6 % among strains SUEMI03, SUEMI08 and SUEMI10, which presented 97.5, 97.8 and 97.7 % identity, respectively, with respect to DSM 6445. The three strains grew optimally in TSB at 28 °C and contained summed features 3 (Cω6 and/or Cω7) and 8 (Cω6 and/or Cω7) and C as major cellular fatty acids. The DNA G+C contents of strains SUEMI03, SUEMI08 and SUEMI10 were 61.6, 60.4 and 61.9 mol%, respectively. Strains SUEMI03, SUEMI08 and SUEMI10 presented less than 60 % interstrain DNA relatedness and less than 30 % relatedness with respect to DSM 6445. In spite of their common geographical origin, the three strains isolated in this study presented several phenotypic differences, presenting phenotypic profiles highly divergent from that of . Therefore, we propose that the strains isolated in this study represent three novel species of the genus , named sp. nov. (type strain SUEMI03  = LMG 26151  = CECT 7838), sp. nov. (type strain SUEMI08  = LMG 26150  = CECT 7839) and sp. nov. (type strain SUEMI10  = LMG 26149  = CECT 7840).

Funding
This study was supported by the:
  • , JCYL
  • , MICINN
  • , CSIC
  • , MICINN
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.031336-0
2012-06-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1300.html?itemId=/content/journal/ijsem/10.1099/ijs.0.031336-0&mimeType=html&fmt=ahah

References

  1. Alexander D. B., Zuberer D. A. 1991; Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Baldani J. I., Baldani V. L. D., Seldin L., Döbereiner J. 1986; Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93 [CrossRef]
    [Google Scholar]
  4. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  6. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey’s Manual of Systematic Bacteriology vol. 2 pp. 1105–1138 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  7. Ding L., Yokota A. 2004; Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov.. Int J Syst Evol Microbiol 54:2223–2230 [CrossRef][PubMed]
    [Google Scholar]
  8. Dobritsa A. P., Reddy M. C. S., Samadpour M. 2010; Reclassification of Herbaspirillum putei as a later heterotypic synonym of Herbaspirillum huttiense, with the description of H. huttiense subsp. huttiense subsp. nov. and H. huttiense subsp. putei subsp. nov., comb. nov., and description of Herbaspirillum aquaticum sp. nov.. Int J Syst Evol Microbiol 60:1418–1426 [CrossRef][PubMed]
    [Google Scholar]
  9. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1983; Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333 [CrossRef]
    [Google Scholar]
  12. Im W. T., Bae H. S., Yokota A., Lee S. T. 2004; Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855 [CrossRef][PubMed]
    [Google Scholar]
  13. Jung S. Y., Lee M. H., Oh T. K., Yoon J. H. 2007; Herbaspirillum rhizosphaerae sp. nov., isolated from rhizosphere soil of Allium victorialis var. platyphyllum . Int J Syst Evol Microbiol 57:2284–2288 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Kirchhof G., Eckert B., Stoffels M., Baldani J. I., Reis V. M., Hartmann A. 2001; Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168[PubMed]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  17. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206 [CrossRef]
    [Google Scholar]
  18. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef][PubMed]
    [Google Scholar]
  19. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E. 2007; Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol 44:181–187 [CrossRef][PubMed]
    [Google Scholar]
  20. Rogers J. S., Swofford D. L. 1998; A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 47:77–89 [CrossRef][PubMed]
    [Google Scholar]
  21. Rothballer M., Schmid M., Klein I., Gattinger A., Grundmann S., Hartmann A. 2006; Herbaspirillum hiltneri sp. nov., isolated from surface-sterilized wheat roots. Int J Syst Evol Microbiol 56:1341–1348 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  23. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  24. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22 [CrossRef][PubMed]
    [Google Scholar]
  25. Stoltzfus J. R., So R., Malarvithi P. P., Ladha J. K., deBruijn F. J. 1997; Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36 [CrossRef]
    [Google Scholar]
  26. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  28. Trujillo M. E., Fernández-Molinero C., Velázquez E., Kroppenstedt R. M., Schumann P., Mateos P. F., Martínez-Molina E. 2005; Micromonospora mirobrigensis sp. nov.. Int J Syst Evol Microbiol 55:877–880 [CrossRef][PubMed]
    [Google Scholar]
  29. Valverde A., Velázquez E., Gutiérrez C., Cervantes E., Ventosa A., Igual J. M. 2003; Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris . Int J Syst Evol Microbiol 53:1979–1983 [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M. 2001; DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51:1315–1322[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.031336-0
Loading
/content/journal/ijsem/10.1099/ijs.0.031336-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error