1887

Abstract

Two Gram-stain-negative, non-endospore-forming, rod-like strains, designated C15 and C44, were isolated from the phyllosphere of and were studied in detail in order to assess their taxonomic position. 16S rRNA gene sequence analysis allocated both isolates clearly to the genus . Both strains showed the highest 16S rRNA gene sequence similarity to JT1 (97.5 %) and S2R03-9 (97.4 %). The fatty acid profiles contained major amounts of C, Cω7 and Cω7/iso-C 2-OH (summed feature 3), which supported the grouping of the isolates in the genus . Physiological/biochemical characterization and DNA–DNA hybridizations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of the strains. For this reason, we propose for strain C15 ( = DSM 23679  = CCUG 60040  = CCM 7788) a novel species with the name sp. nov. Strain C44 ( = DSM 23675  = CCM 7789) is an additional strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030767-0
2012-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/917.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030767-0&mimeType=html&fmt=ahah

References

  1. Anesti V., Vohra J., Goonetilleka S., McDonald I. R., Sträubler B., Stackebrandt E., Kelly D. P., Wood A. P.. ( 2004;). Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. . Environ Microbiol 6:, 820–830. [CrossRef][PubMed]
    [Google Scholar]
  2. Anesti V., McDonald I. R., Ramaswamy M., Wade W. G., Kelly D. P., Wood A. P.. ( 2005;). Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. . Environ Microbiol 7:, 1227–1238. [CrossRef][PubMed]
    [Google Scholar]
  3. Aslam Z., Lee C. S., Kim K.-H., Im W.-T., Ten L. N., Lee S.-T.. ( 2007;). Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 57:, 566–571. [CrossRef][PubMed]
    [Google Scholar]
  4. Bousfield I. J., Green P. N.. ( 1985;). Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. . Int J Syst Bacteriol 35:, 209. [CrossRef]
    [Google Scholar]
  5. Corpe W. A., Rheem S.. ( 1989;). Ecology of the methylotrophic bacteria on living leaf surfaces. . FEMS Microbiol Ecol 62:, 243–249. [CrossRef]
    [Google Scholar]
  6. Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C., Vorholt J. A.. ( 2009;). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. . Proc Natl Acad Sci U S A 106:, 16428–16433. [CrossRef][PubMed]
    [Google Scholar]
  7. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T.. ( 2000;). Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.–novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. . Syst Appl Microbiol 23:, 210–218. [CrossRef][PubMed]
    [Google Scholar]
  8. Doronina N. V., Trotsenko Y. A., Kuznetsov B. B., Tourova T. P., Salkinoja-Salonen M. S.. ( 2002;). Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. . Int J Syst Evol Microbiol 52:, 773–776. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Fischer M., Bossdorf O., Gockel S., Hänsel F., Hemp A., Hessenmöller D., Korte G., Nieschulze J., Pfeiffer S.. & other authors ( 2010;). Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. . Basic Appl Ecol 11:, 473–485. [CrossRef]
    [Google Scholar]
  11. Gallego V., García M. T., Ventosa A.. ( 2005a;). Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. . Int J Syst Evol Microbiol 55:, 281–287. [CrossRef][PubMed]
    [Google Scholar]
  12. Gallego V., García M. T., Ventosa A.. ( 2005b;). Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. . Int J Syst Evol Microbiol 55:, 1429–1433. [CrossRef][PubMed]
    [Google Scholar]
  13. Gallego V., García M. T., Ventosa A.. ( 2005c;). Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. . Int J Syst Evol Microbiol 55:, 2333–2337. [CrossRef][PubMed]
    [Google Scholar]
  14. Gallego V., García M. T., Ventosa A.. ( 2006;). Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. . Int J Syst Evol Microbiol 56:, 339–342. [CrossRef][PubMed]
    [Google Scholar]
  15. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Green P. N.. ( 2006;). Methylobacterium. . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 3rd edn., vol. 5, pp. 257–265. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  17. Green P. N., Bousfield I. J.. ( 1983;). Emendation of Methylobacterium (Patt, Cole, and Hanson 1976); Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito & Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin & Goodfellow 1979) comb. nov. . Int J Syst Bacteriol 33:, 875–877. [CrossRef]
    [Google Scholar]
  18. Green P. N., Bousfield I. J., Hood D.. ( 1988;). Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. . Int J Syst Bacteriol 38:, 124–127. [CrossRef]
    [Google Scholar]
  19. Holland M. A., Polacco J. C.. ( 1994;). PPFMs and other covert contaminants: is there more to plant physiology than just plant?. Annu Rev Plant Physiol Plant Mol Biol 45:, 197–209. [CrossRef]
    [Google Scholar]
  20. Idris R. A., Kuffner M., Bodrossy L., Puschenreiter M., Monchy S., Wenzel W. W., Sessitsch A.. ( 2006;). Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. . Syst Appl Microbiol 29:, 634–644. [CrossRef][PubMed]
    [Google Scholar]
  21. Ivanova E. G., Doronina N. V., Shepeliakovskaia A. O., Laman A. G., Brovko F. A., Trotsenko Yu. A.. ( 2000;). Facultative and obligate aerobic methylobacteria synthesize cytokinins. . Microbiology (English translation of Mikrobiologiia) 69:, 646–651. [PubMed]
    [Google Scholar]
  22. Ivanova E. G., Doronina N. V., Trotsenko Yu. A.. ( 2001;). Aerobic methylobacteria are capable of synthesizing auxins. . Microbiology (English translation of Mikrobiologiia) 70:, 392–397. [PubMed]
    [Google Scholar]
  23. Ivanova E. G., Fedorov D. N., Doronina N. V., Trotsenko Yu. A.. ( 2006;). Production of vitamin B12 in aerobic methylotrophic bacteria. . Microbiology (English translation of Mikrobiologiia) 75:, 494–496. [PubMed]
    [Google Scholar]
  24. Jourand P., Giraud E., Béna G., Sy A., Willems A., Gillis M., Dreyfus B., de Lajudie P.. ( 2004;). Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. . Int J Syst Evol Microbiol 54:, 2269–2273. [CrossRef][PubMed]
    [Google Scholar]
  25. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  26. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  27. Kang Y.-S., Kim J., Shin H.-D., Nam Y.-D., Bae J.-W., Jeon C. O., Park W.. ( 2007;). Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis. . Int J Syst Evol Microbiol 57:, 2849–2853. [CrossRef][PubMed]
    [Google Scholar]
  28. Kato Y., Asahara M., Goto K., Kasai H., Yokota A.. ( 2008;). Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. . Int J Syst Evol Microbiol 58:, 1134–1141. [CrossRef][PubMed]
    [Google Scholar]
  29. Koenig R. L., Morris R. O., Polacco J. C.. ( 2002;). tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. . J Bacteriol 184:, 1832–1842. [CrossRef][PubMed]
    [Google Scholar]
  30. Konovalova H. M., Shylin S. O., Rokytko P. V.. ( 2007;). [Characteristics of carotinoids of methylotrophic bacteria of Methylobacterium genus]. . Mikrobiol Z 69:, 35–41 (in Ukrainian).[PubMed]
    [Google Scholar]
  31. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing nucleic acid techniques in bacterial systematics. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  32. Lidstrom M. E., Chistoserdova L.. ( 2002;). Plants in the pink: cytokinin production by methylobacterium. . J Bacteriol 184:, 1818. [CrossRef][PubMed]
    [Google Scholar]
  33. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  34. Madhaiyan M., Kim B. Y., Poonguzhali S., Kwon S. W., Song M. H., Ryu J. H., Go S. J., Koo B. S., Sa T. M.. ( 2007;). Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. . Int J Syst Evol Microbiol 57:, 326–331. [CrossRef][PubMed]
    [Google Scholar]
  35. Madhaiyan M., Poonguzhali S., Kwon S. W., Sa T. M.. ( 2009;). Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. . Int J Syst Evol Microbiol 59:, 22–27. [CrossRef][PubMed]
    [Google Scholar]
  36. McDonald I. R., Kenna E. M., Murrell J. C.. ( 1995;). Detection of methanotrophic bacteria in environmental samples with the PCR. . Appl Environ Microbiol 61:, 116–121.[PubMed]
    [Google Scholar]
  37. McDonald I. R., Doronina N. V., Trotsenko Y. A., McAnulla C., Murrell J. C.. ( 2001;). Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. . Int J Syst Evol Microbiol 51:, 119–122.[PubMed]
    [Google Scholar]
  38. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R.. ( 1994;). fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. . Comput Appl Biosci 10:, 41–48.[PubMed]
    [Google Scholar]
  39. Patt T. E., Cole G. C., Bland J., Hanson R. S.. ( 1974;). Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. . J Bacteriol 120:, 955–964.[PubMed]
    [Google Scholar]
  40. Patt T. E., Cole G. C., Hanson R. S.. ( 1976;). Methylobacterium, a new genus of facultatively methylotrophic bacteria. . Int J Syst Bacteriol 26:, 226–229. [CrossRef]
    [Google Scholar]
  41. Pirttilä A. M., Laukkanen H., Pospiech H., Myllylä R., Hohtola A.. ( 2000;). Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. . Appl Environ Microbiol 66:, 3073–3077. [CrossRef][PubMed]
    [Google Scholar]
  42. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  43. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  44. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  45. Schauer S., Kämpfer P., Wellner S., Spröer C., Kutschera U.. ( 2011;). Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. . Int J Syst Evol Microbiol 61:, 870–876. [CrossRef][PubMed]
    [Google Scholar]
  46. Stepnowski P., Blotevogel K.-H., Jastorff B.. ( 2004;). Extraction of carotenoid produced during methanol waste biodegradation. . Int Biodeterior Biodegradation 53:, 127–132. [CrossRef]
    [Google Scholar]
  47. Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M.. & other authors ( 2001;). Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. . J Bacteriol 183:, 214–220. [CrossRef][PubMed]
    [Google Scholar]
  48. Sy A., Timmers A. C. J., Knief C., Vorholt J. A.. ( 2005;). Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. . Appl Environ Microbiol 71:, 7245–7252. [CrossRef][PubMed]
    [Google Scholar]
  49. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  50. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  51. Trotsenko Y. A., Ivanova E. G., Doronina N. V.. ( 2001;). Aerobic methylotrophic bacteria as phytosymbionts. . Microbiology 70:, 623–632. [CrossRef]
    [Google Scholar]
  52. Urakami T., Araki H., Suzuki K., Komagata K.. ( 1993;). Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. . Int J Syst Bacteriol 43:, 504–513. [CrossRef]
    [Google Scholar]
  53. Van Aken B., Peres C. M., Doty S. L., Yoon J. M., Schnoor J. L.. ( 2004;). Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides×nigra DN34). . Int J Syst Evol Microbiol 54:, 1191–1196. [CrossRef][PubMed]
    [Google Scholar]
  54. Wang X., Sahr F., Xue T., Sun B.. ( 2007;). Methylobacterium salsuginis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 57:, 1699–1703. [CrossRef][PubMed]
    [Google Scholar]
  55. Weon H.-Y., Kim B.-Y., Joa J.-H., Son J.-A., Song M.-H., Kwon S.-W., Go S.-J., Yoon S.-H.. ( 2008;). Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. . Int J Syst Evol Microbiol 58:, 93–96. [CrossRef][PubMed]
    [Google Scholar]
  56. Williams S. T., Goodfellow M., Alderson G.. ( 1989;). Genus Streptomyces. Waksman and Henrici 1943, 339AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 2452–2492. Edited by Williams S. T., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  57. Wood A. P., Kelly D. P., McDonald I. R., Jordan S. L., Morgan T. D., Khan S., Murrell J. C., Borodina E.. ( 1998;). A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. . Arch Microbiol 169:, 148–158. [CrossRef][PubMed]
    [Google Scholar]
  58. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. . Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030767-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030767-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error