1887

Abstract

The close association between the olive fly (Rossi) (Diptera: Tephritidae) and bacteria has been known for more than a century. Recently, the presence of a host-specific, hereditary, unculturable symbiotic bacterium, designated ‘ Erwinia dacicola’, has been described inside the cephalic organ of the fly, called the oesophageal bulb. In the present study, the 16S rRNA gene sequence variability of ‘ E. dacicola’ was examined within and between 26 Italian olive fly populations sampled across areas where olive trees occur in the wild and areas where cultivated olive trees have been introduced through history. The bacterial contents of the oesophageal bulbs of 314 olive flies were analysed and a minimum of 781 bp of the 16S rRNA gene was sequenced. The corresponding host fly genotype was assessed by sequencing a 776 bp portion of the mitochondrial genome. Two ‘. E. dacicola’ haplotypes were found (htA and htB), one being slightly more prevalent than the other (57 %). The two haplotypes did not co-exist in the same individuals, as confirmed by cloning. Interestingly, the olive fly populations of the two main Italian islands, Sicily and Sardinia, appeared to be represented exclusively by the htB and htA haplotypes, respectively, while peninsular populations showed both bacterial haplotypes in different proportions. No significant correlation emerged between the two symbiont haplotypes and the 16 host fly haplotypes observed, suggesting evidence for a mixed model of vertical and horizontal transmission of the symbiont during the fly life cycle.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030668-0
2012-01-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/179.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030668-0&mimeType=html&fmt=ahah

References

  1. Behar A. , Ben-Yosef M. , Lauzon C. R. , Yuval B. , Jurkevich E. . ( 2009; ). Structure and function of the bacterial community associated with the Mediterranean fruit fly. . In Insect Symbiosis, vol. 3, pp. 251–271. Edited by Bourtzis K. , Miller T. . . Boca Raton:: CRC Press;.
    [Google Scholar]
  2. Ben-Yosef M. , Aharon Y. , Jurkevitch E. , Yuval B. . ( 2010; ). Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. . Proc Biol Sci 277:, 1545–1552. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blando S. , Mineo G. . ( 2006; ). Generazioni primaverili della mosca delle olive sull’Olivastro (Olea europaea var. Sylvestris brot.) in Sicilia. . Boll Zool Agra Bachic Ser 38:, 173–178 (in Italian).
    [Google Scholar]
  4. Breton C. , Tersac M. , Bervillé A. . ( 2006; ). Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. . J Biogeogr 33:, 1916–1928. [CrossRef]
    [Google Scholar]
  5. Capuzzo C. , Firrao G. , Mazzon L. , Squartini A. , Girolami V. . ( 2005; ). Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). . Int J Syst Evol Microbiol 55:, 1641–1647. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carrión Y. , Ntinou M. , Badal E. . ( 2010; ). Olea europaea L. in the North Mediterranean Basin during the Pleniglacial and the Early–Middle Holocene. . Quat Sci Rev 29:, 952–968. [CrossRef]
    [Google Scholar]
  7. Clement M. , Posada D. , Crandall K. A. . ( 2000; ). TCS: a computer program to estimate gene genealogies. . Mol Ecol 9:, 1657–1659. [CrossRef] [PubMed]
    [Google Scholar]
  8. Daane K. M. , Johnson M. W. . ( 2010; ). Olive fruit fly: managing an ancient pest in modern times. . Annu Rev Entomol 55:, 151–169. [CrossRef] [PubMed]
    [Google Scholar]
  9. Estes A. M. , Hearn D. J. , Bronstein J. L. , Pierson E. A. . ( 2009; ). The olive fly endosymbiont, “Candidatus Erwinia dacicola”, switches from an intracellular existence to an extracellular existence during host insect development. . Appl Environ Microbiol 75:, 7097–7106. [CrossRef] [PubMed]
    [Google Scholar]
  10. Excoffier L. , Laval G. , Schneider S. . ( 2007; ). Arlequin (version 3.0): an integrated software package for population genetics data analysis. . Evol Bioinform Online 1:, 47–50.
    [Google Scholar]
  11. Girolami V. . ( 1973; ). Reperti morfo-istologici sulle batterio simbiosi del Dacus oleae Gmelin e di altri ditteri tripetidi, in natura e negli allevamenti su substrati artificiali. . Redia 54:, 269–294 (in Italian).
    [Google Scholar]
  12. Girolami V. , Cavalloro R. . ( 1972; ). Aspetti della simbiosi batterica di Dacus oleae (Gmelin) in natura e negli allevamenti di laboratorio. . Ann Soc Entomol Fr 8:, 561–571 (in Italian).
    [Google Scholar]
  13. Hagen K. S. . ( 1966; ). Dependence of the olive fly, Dacus oleae, larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. . Nature 209:, 423–424. [CrossRef]
    [Google Scholar]
  14. Hunt D. E. , Klepac-Ceraj V. , Acinas S. G. , Gautier C. , Bertilsson S. , Polz M. F. . ( 2006; ). Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. . Appl Environ Microbiol 72:, 2221–2225. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kounatidis I. , Crotti E. , Sapountzis P. , Sacchi L. , Rizzi A. , Chouaia B. , Bandi C. , Alma A. , Daffonchio D. et al. & other authors ( 2009; ). Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). . Appl Environ Microbiol 75:, 3281–3288. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mazzon L. , Piscedda A. , Simonato M. , Martinez-Sañudo I. , Squartini A. , Girolami V. . ( 2008; ). Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis’. . Int J Syst Evol Microbiol 58:, 1277–1287. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mazzon L. , Martinez-Sañudo I. , Simonato M. , Squartini A. , Savio C. , Girolami V. . ( 2010; ). Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. . Mol Phylogenet Evol 56:, 312–326. [CrossRef] [PubMed]
    [Google Scholar]
  18. Nardi F. , Carapelli A. , Dallai R. , Roderick G. K. , Frati F. . ( 2005; ). Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). . Mol Ecol 14:, 2729–2738. [CrossRef] [PubMed]
    [Google Scholar]
  19. Nardi F. , Carapelli A. , Boore J. L. , Roderick G. K. , Dallai R. , Frati F. . ( 2010; ). Domestication of olive fly through a multi-regional host shift to cultivated olives: comparative dating using complete mitochondrial genomes. . Mol Phylogenet Evol 57:, 678–686. [CrossRef] [PubMed]
    [Google Scholar]
  20. Osborn A. M. , Moore E. R. B. , Timmis K. N. . ( 2000; ). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. . Environ Microbiol 2:, 39–50. [CrossRef] [PubMed]
    [Google Scholar]
  21. Palmano S. , Firrao G. , Locci R. . ( 2000; ). Sequence analysis of domains III and IV of the 23S rRNA gene of verticillate streptomycetes. . Int J Syst Evol Microbiol 50:, 1187–1191. [CrossRef] [PubMed]
    [Google Scholar]
  22. Panchal M. . ( 2007; ). The automation of nested clade phylogeographic analysis. . Bioinformatics 23:, 509–510. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pavari A. . ( 1916; ). Studio preliminare sulla coltura delle specie forestali esotiche in Italia. . Ann R Ist Sup For Naz I:, 159–379 (in Italian).
    [Google Scholar]
  24. Petri L. . ( 1909; ). Ricerche sopra i batteri intestinali della mosca olearia. Roma:: Memorie della Regia Stazione di Patologia Vegetale di Roma;.
    [Google Scholar]
  25. Posada D. , Crandall K. A. , Templeton A. R. . ( 2000; ). GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. . Mol Ecol 9:, 487–488. [CrossRef] [PubMed]
    [Google Scholar]
  26. Posada D. , Crandall K. A. , Templeton A. R. . ( 2006; ). Nested Clade Analysis statistics. . Mol Ecol Notes 6:, 590–593. [CrossRef]
    [Google Scholar]
  27. Rice R. E. . ( 1999; ). Olive fruit fly, Bactrocera (Dacus) oleae . . UC Plant Prot. Q. 9:, 2.
    [Google Scholar]
  28. Rousset F. . ( 1997; ). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. . Genetics 145:, 1219–1228.[PubMed]
    [Google Scholar]
  29. Sacchetti P. , Granchietti A. , Landini S. , Viti C. , Giovannetti L. , Belcari A. . ( 2008; ). Relationships between the olive fly and bacteria. . J Appl Entomol 132:, 682–689. [CrossRef]
    [Google Scholar]
  30. Silva F. J. , Moret A. , Neef A. , Belda E. . ( 2008; ). Bacterial microbiota associated with a Bactrocera oleae population from eastern Spain. In First Meeting of TEAM, Palma de Mallorca 7–8th April 2008, abstract book, vol. 15. . Edited by Miranda-Chueca M. A. . . Mallorca:: Universitat de les Illes Balears;.
    [Google Scholar]
  31. Simon C. , Frati F. , Beckenbach A. , Crespi B. , Liu H. , Flook P. . ( 1994; ). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. . Ann Entomol Soc Am 87:, 651–701.[CrossRef]
    [Google Scholar]
  32. Simon C. , Buckley T. R. , Frati F. , Stewart J. B. , Beckenbach A. T. . ( 2006; ). Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. . Annu Rev Ecol Evol Syst 37:, 545–579. [CrossRef]
    [Google Scholar]
  33. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  34. Templeton A. R. , Crandall K. A. , Sing C. F. . ( 1992; ). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. . Genetics 132:, 619–633.[PubMed]
    [Google Scholar]
  35. Templeton A. R. , Routman E. , Phillips C. A. . ( 1995; ). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum . . Genetics 140:, 767–782.[PubMed]
    [Google Scholar]
  36. Tzanakakis M. E. . ( 2006; ). Insects and Mites Feeding on Olive: Distribution, Importance, Habits, Seasonal Development and Dormancy. Leiden:: Brill Acad. Publ;.
    [Google Scholar]
  37. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  38. White I. M. . ( 2006; ). Taxonomy of the Dacina (Diptera: Tephritidae) of Africa and the Middle East. . Afr Entomol Mem 2:, 1–156.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030668-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030668-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error