1887

Abstract

A novel mesophilic sulfur- and thiosulfate-oxidizing bacterium, strain 42BKT, was isolated from the gas-bubbling sediment at the Iheya North hydrothermal system in the mid-Okinawa Trough, Japan. The isolate was a Gram-negative, non-motile and coccoid to oval-shaped bacterium. Growth was observed at 10–40 °C (optimum 28–30 °C) and in the pH range 5·0–9·0 (optimum 6·5–7·0). Strain 42BKT grew chemolithoautotrophically with elemental sulfur or thiosulfate as a sole electron donor and oxygen (optimum 5 % in gas phase) or nitrate as an electron acceptor. The G+C content of the genomic DNA was 48·0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate belonged to the previously uncultivated Group F within the -, which includes phylotypes of vent epibiont and environmental sequences from global deep-sea cold seep and hydrothermal vent fields. On the basis of the physiological and molecular characteristics of this isolate, the type species of a novel genus, gen. nov., sp. nov., is proposed. The type strain is 42BKT (=ATCC BAA-797=JCM 12117).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03042-0
2004-09-01
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541477.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03042-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  3. Baross, J. A. ( 1995; ). Isolation, growth and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual. Thermophiles, pp. 15–23. Edited by F. T. Robb & A. R. Place. Cold Springer Harbor, NY: Cold Spring Harbor Laboratory.
  4. Campbell, B. J., Jeanthon, C., Kostka, J. E., Luther, G. W., III & Cary, S. C. ( 2001; ). Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67, 4566–4572.[CrossRef]
    [Google Scholar]
  5. Corre, E., Reysenbach, A.-L. & Prieur, D. ( 2001; ). Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205, 329–335.
    [Google Scholar]
  6. Inagaki, F., Sakihama, Y., Inoue, A., Kato, C. & Horikoshi, K. ( 2002; ). Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 4, 277–286.[CrossRef]
    [Google Scholar]
  7. Inagaki, F., Takai, K., Nealson, K. H. & Horikoshi, K. ( 2003; ). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the mid-Okinawa Trough. Int J Syst Evol Microbiol 53, 1801–1805.[CrossRef]
    [Google Scholar]
  8. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  9. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  10. Li, L., Guezennec, J., Nichols, P., Henry, P., Yanagibayashi, M. & Kato, C. ( 1999; ). Microbial diversity in Nankai Trough sediments at a depth of 3,843m. J Oceanogr 55, 635–642.[CrossRef]
    [Google Scholar]
  11. Longnecker, K. & Reysenbach, A.-L. ( 2001; ). Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Lett 35, 287–293.
    [Google Scholar]
  12. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  13. Moyer, C. L., Dobbs, F. C. & Karl, D. M. ( 1995; ). Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 61, 1555–1562.
    [Google Scholar]
  14. Polz, M. F. & Cavanaugh, C. M. ( 1995; ). Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92, 7232–7236.[CrossRef]
    [Google Scholar]
  15. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  16. Reysenbach, A. L., Longnecker, K. & Kirshtein, J. ( 2000; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  17. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003; ). Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  18. Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54, 25–32.[CrossRef]
    [Google Scholar]
  19. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  20. Teske, A., Hinrichs, K. U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S. P., Sogin, M. L. & Jannasch, H. W. ( 2002; ). Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68, 1994–2007.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  22. Zillig, W., Holz, I., Janekovic, D. & 7 other authors ( 1990; ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172, 3959–3965.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03042-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03042-0
Loading

Data & Media loading...

vol. , part 5, pp. 1477 - 1482

Effects of temperature (A), pH (B), sea salts (C) and oxygen concentration in headspace (D) on growth of gen. nov. sp. nov. [PDF](865 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error