1887

Abstract

Gram-negative-staining bacteria that were resistant to monoterpene myrcene (7-methyl-3-methylene-1.6-octadiene, CH, at concentrations of up to 10 µl ml in TSB) were isolated from the gut contents of adult bark beetles (Coleoptera, Scolytidae). The beetles were collected from the bark of Norway spruce () in Lithuania. Bark beetles feed on conifers, which produce myrcene among many other defensive compounds. It has been suggested that the micro-organisms present within the beetles’ guts could be involved in their resistance towards this plant defensive compound. The most resistant bacterial strains were isolated and characterized by phenotypic assays as well as fatty acid analysis, 16S rRNA gene sequencing, multilocus sequence analyses (MLSA) based on the , and genes and DNA–DNA hybridization. Biochemical characterization indicated that the bacteria belonged to the family . Phylogenetic analyses of the 16S rRNA gene sequences and MLSA of the novel strains revealed that they belonged to the genus , but represented a novel species. The dominant cellular fatty acids were C and C cyclo. The DNA G+C content was 49.1 mol%. The results obtained in this study indicated that these bacteria from the bark beetle gut represented a novel species, for which the name sp. nov. is proposed, with the type strain DSM 22678 ( = Y1 = LMG 25347).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030304-0
2012-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/942.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030304-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Brady C. L., Cleenwerck I., Venter S. N., Vancanneyt M., Swings J., Coutinho T. A.. ( 2008;). Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). . Syst Appl Microbiol 31:, 447–460. [CrossRef][PubMed]
    [Google Scholar]
  3. Brosius J., Dull T. J., Sleeter D. D., Noller H. F.. ( 1981;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. . J Mol Biol 148:, 107–127. [CrossRef][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Gardan L., Christen R., Achouak W., Prior P.. ( 2004;). Erwinia papayae sp. nov., a pathogen of papaya (Carica papaya). . Int J Syst Evol Microbiol 54:, 107–113. [CrossRef][PubMed]
    [Google Scholar]
  8. Geider K., Auling G., Du Z., Jakovljevic V., Jock S., Völksch B.. ( 2006;). Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. . Int J Syst Evol Microbiol 56:, 2937–2943. [CrossRef][PubMed]
    [Google Scholar]
  9. Gershenzon J., Dudareva N.. ( 2007;). The function of terpene natural products in the natural world. . Nat Chem Biol 3:, 408–414. [CrossRef][PubMed]
    [Google Scholar]
  10. Godon J. J., Zumstein E., Dabert P., Habouzit F., Moletta R.. ( 1997;). Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. . Appl Environ Microbiol 63:, 2802–2813.[PubMed]
    [Google Scholar]
  11. Hauben L., Swings J.. ( 2005;). Genus XIII. Erwinia Winslow, Broadhurst, Buchanan, Krumweide, Rogers and Smith 1920, 209AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B, pp. 670–679. Edited by Brenner D. J., Krieg N. R., Staley J. R., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  12. Hauben L., Moore E. R. B., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J.. ( 1998;). Phylogenetic position of phytopathogens within the Enterobacteriaceae. . Syst Appl Microbiol 21:, 384–397. [CrossRef][PubMed]
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  15. Keeling C. I., Bohlmann J.. ( 2006;). Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. . New Phytol 170:, 657–675. [CrossRef][PubMed]
    [Google Scholar]
  16. Kube M., Migdoll A. M., Gehring I., Heitmann K., Mayer Y., Kuhl H., Knaust F., Geider K., Reinhardt R.. ( 2010;). Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. . BMC Genomics 11:, 393. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Microbiol 39:, 159–167.
    [Google Scholar]
  18. Phillips M. A., Croteau R. B.. ( 1999;). Resin-based defenses in conifers. . Trends Plant Sci 4:, 184–190. [CrossRef][PubMed]
    [Google Scholar]
  19. Posada D., Crandall K. A.. ( 1998;). modeltest: testing the model of DNA substitution. . Bioinformatics 14:, 817–818. [CrossRef][PubMed]
    [Google Scholar]
  20. Rojas A. M., de Los Rios J. E. G., Fischer-Le Saux M., Jimenez P., Reche P., Bonneau S., Sutra L., Mathieu-Daudé F., McClelland M.. ( 2004;). Erwinia toletana sp. nov., associated with Pseudomonas savastanoi-induced tree knots. . Int J Syst Evol Microbiol 54:, 2217–2222. [CrossRef][PubMed]
    [Google Scholar]
  21. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Seybold S. J., Huber D. P. W., Lee J. C., Graves A. D., Bohlmann J.. ( 2006;). Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. . Phytochem Rev 5:, 143–178. [CrossRef]
    [Google Scholar]
  24. Skrodenytė-Arbačiauskienė V., Būda V., Radžiutė S., Stunžėnas V.. ( 2006a;). Myrcene-resistant bacteria isolated from the gut of phytophagous insect Ips typographus. . Ekologija 4:, 1–6.
    [Google Scholar]
  25. Skrodenyte-Arbaciauskiene V., Sruoga A., Butkauskas D.. ( 2006b;). Assessment of microbial diversity in the river trout Salmo trutta fario L. intestinal tract identified by partial 16S rRNA gene sequence analysis. . Fish Sci 72:, 597–602. [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Goebel M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Evol Microbiol 44:, 846–849.
    [Google Scholar]
  27. Stoesser G., Baker W., van den Broek A., Camon E., Garcia-Pastor M., Kanz C., Kulikova T., Lombard V., Lopez R.. & other authors ( 2001;). The EMBL nucleotide sequence database. . Nucleic Acids Res 29:, 17–21. [CrossRef][PubMed]
    [Google Scholar]
  28. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  30. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Synder L. R... Washington:: American Society for Microbiology;.
    [Google Scholar]
  31. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J.. ( 1996;). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:, 407–438.[PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol 37:, 463–464.
    [Google Scholar]
  33. Zhao T., Krokene P., Björklund N., Långström B., Solheim H., Christiansen E., Borg-Karlson A.-K.. ( 2010;). The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies. . Phytochemistry 71:, 1332–1341. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030304-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030304-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error