1887

Abstract

A Gram-negative, motile, rod-shaped bacterial strain, HP15, was isolated from aggregates taken from surface waters of the German Wadden Sea (German Bight). Of 82 marine isolates, HP15 was chosen for further study because of its high potential to induce production of transparent exopolymeric particles and aggregate formation while interacting with the diatom . HP15 grew optimally at 34–38 °C and pH 7.0–8.5, and was able to tolerate salt concentrations of 0.5–20 % (w/v) NaCl. HP15 was characterized chemotaxonomically by possessing ubiquinone-9 as the major respiratory lipoquinone, as well as C, Cω9 and Cω7/iso-C 2-OH as the predominant fatty acids. The DNA G+C content of strain HP15 was 56.9 mol%. The closest relative based on 16S rRNA gene sequence analysis was the type strain of , with 99 % similarity. Whole-genome relatedness values of HP15 to the type strains of , , and were less than 70 %, as determined by DNA–DNA hybridization. On the basis of phenotypic and chemotaxonomic properties as well as phylogenetic analyses, the isolate represents a novel species, sp. nov.; the type strain is HP15 ( = DSM 23420 = CIP 110141).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030189-0
2012-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/124.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030189-0&mimeType=html&fmt=ahah

References

  1. Antunes A. , França L. , Rainey F. A. , Huber R. , Nobre M. F. , Edwards K. J. , da Costa M. S. . ( 2007; ). Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. . Int J Syst Evol Microbiol 57:, 1035–1040. [CrossRef] [PubMed]
    [Google Scholar]
  2. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  3. Decho A. W. . ( 1990; ). Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. . In Oceanography and Marine Biology: an Annual Review, vol. 28, pp. 73–153. Edited by Barnes H. , Ansell A. D. , Gibson R. N. . . Aberdeen, UK:: Aberdeen University Press;.
    [Google Scholar]
  4. Gärdes A. , Kaeppel E. C. , Shehzad A. , Seebah S. , Teeling H. , Yarza P. , Glöckner F. O. , Grossart H.-P. , Ullrich M. S. . ( 2010; ). Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. . Stand Genomic Sci 3:, 97–107. [CrossRef] [PubMed]
    [Google Scholar]
  5. Gärdes A. , Iversen M. H. , Grossart H. P. , Passow U. , Ullrich M. S. . ( 2011; ). Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii . . ISME J 5:, 436–445. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gauthier M. J. , Lafay B. , Christen R. , Fernandez L. , Acquaviva M. , Bonin P. , Bertrand J. C. . ( 1992; ). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. . Int J Syst Bacteriol 42:, 568–576. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gorshkova N. M. , Ivanova E. P. , Sergeev A. F. , Zhukova N. V. , Alexeeva Y. , Wright J. P. , Nicolau D. V. , Mikhailov V. V. , Christen R. . ( 2003; ). Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. . Int J Syst Evol Microbiol 53:, 2073–2078. [CrossRef] [PubMed]
    [Google Scholar]
  8. Green D. H. , Bowman J. P. , Smith E. A. , Gutierrez T. , Bolch C. J. S. . ( 2006; ). Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. . Int J Syst Evol Microbiol 56:, 523–527. [CrossRef] [PubMed]
    [Google Scholar]
  9. Grossart H. P. , Schlingloff A. , Bernhard M. , Simon M. , Brinkhoff T. . ( 2004; ). Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. . FEMS Microbiol Ecol 47:, 387–396. [CrossRef] [PubMed]
    [Google Scholar]
  10. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192.[CrossRef]
    [Google Scholar]
  11. Huu N. B. , Denner E. B. M. , Ha D. T. , Wanner G. , Stan-Lotter H. . ( 1999; ). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. . Int J Syst Bacteriol 49:, 367–375. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  13. Kuykendall L. D. , Roy M. A. , O’Neill J. J. , Devine T. E. . ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  14. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  15. Martín S. , Márquez M. C. , Sánchez-Porro C. , Mellado E. , Arahal D. R. , Ventosa A. . ( 2003; ). Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. . Int J Syst Evol Microbiol 53:, 1383–1387. [CrossRef] [PubMed]
    [Google Scholar]
  16. Martinez J. S. , Butler A. . ( 2007; ). Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. . J Inorg Biochem 101:, 1692–1698. [CrossRef] [PubMed]
    [Google Scholar]
  17. Miller L. T. . ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  18. Montes M. J. , Bozal N. , Mercadé E. . ( 2008; ). Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. . Int J Syst Evol Microbiol 58:, 1346–1349. [CrossRef] [PubMed]
    [Google Scholar]
  19. Roh S. W. , Quan Z. X. , Nam Y. D. , Chang H. W. , Kim K. H. , Rhee S. K. , Oh H. M. , Jeon C. O. , Yoon J. H. , Bae J. W. . ( 2008; ). Marinobacter goseongensis sp. nov., from seawater. . Int J Syst Evol Microbiol 58:, 2866–2870. [CrossRef] [PubMed]
    [Google Scholar]
  20. Romanenko L. A. , Schumann P. , Rohde M. , Zhukova N. V. , Mikhailov V. V. , Stackebrandt E. . ( 2005; ). Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. . Int J Syst Evol Microbiol 55:, 143–148. [CrossRef] [PubMed]
    [Google Scholar]
  21. Shieh W. Y. , Jean W. D. , Lin Y. T. , Tseng M. . ( 2003; ). Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. . Can J Microbiol 49:, 244–252. [CrossRef] [PubMed]
    [Google Scholar]
  22. Stamatakis A. . ( 2006; ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef] [PubMed]
    [Google Scholar]
  23. Takai K. , Moyer C. L. , Miyazaki M. , Nogi Y. , Hirayama H. , Nealson K. H. , Horikoshi K. . ( 2005; ). Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. . Extremophiles 9:, 17–27. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tindall B. J. . ( 1990a; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  25. Tindall B. J. . ( 1990b; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130.[CrossRef]
    [Google Scholar]
  26. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  27. Yarza P. , Richter M. , Peplies J. , Euzeby J. , Amann R. , Schleifer K. H. , Ludwig W. , Glöckner F. O. , Rosselló-Móra R. . ( 2008; ). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  28. Yoon J. H. , Yeo S. H. , Kim I. G. , Oh T. K. . ( 2004; ). Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 54:, 1799–1803. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030189-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030189-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error