1887

Abstract

A novel Gram-staining-negative bacterial strain, designated XH4, was isolated from soil of a forest in the Hotan River valley, Xinjiang Uyghur autonomous region, PR China. The cells were strictly aerobic, non-motile, short rods. The isolate grew optimally at 37 °C and at pH 7.0–8.0. Based on 16S rRNA gene sequence analysis, strain XH4 belonged to the genus and was closely related to ATCC 33299 (96.1 % sequence similarity). The DNA G+C content was 41.2 mol%. The major polar lipid of strain XH4 was phosphatidylethanolamine, and several unidentified polar lipids were also present. Strain XH4 showed the typical chemotaxonomic features of the genus , with the presence of ceramide phosphorylethanolamine 2 (CerPE-2) as the major ceramide. The major cellular fatty acids of strain XH4 were iso-C (34.0 %), summed feature 3 (Cω7 and/or Cω6; 20.7 %) and iso-C 3-OH (14.7 %). The predominant isoprenoid quinone was MK-7. On the basis of phenotypic data and phylogenetic inference, strain XH4 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XH4 ( = NRRL B-59204  = CCTCC AB 209007). Emended descriptions of and are also given.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.030155-0
2013-03-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/815.html?itemId=/content/journal/ijsem/10.1099/ijs.0.030155-0&mimeType=html&fmt=ahah

References

  1. Choi H. A., Lee S. S.. ( 2012;). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. . Int J Syst Evol Microbiol 62:, 2559–2564. [CrossRef][PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  4. Duan S. W., Liu Z. C., Feng X. Y., Zheng K., Cheng L. F.. ( 2009;). Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. . J Microbiol 47:, 693–698. [CrossRef][PubMed]
    [Google Scholar]
  5. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. He X., Xiao T., Kuang H. J., Lan X. J., Tudahong M., Osman G., Fang C. X., Rahman E.. ( 2010;). Sphingobacterium shayense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 2377–2381. [CrossRef][PubMed]
    [Google Scholar]
  8. Holmes B., Owen R. J., Hollis D. G.. ( 1982;). Flavobacterium spiritivorum, a new species isolated from human clinical specimens. . Int J Syst Bacteriol 32:, 157–165. [CrossRef]
    [Google Scholar]
  9. Kim M. K., Im W. T., Ohta H., Lee M., Lee S. T.. ( 2005;). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. . J Microbiol 43:, 152–157.[PubMed]
    [Google Scholar]
  10. Kim K. H., Ten L. N., Liu Q. M., Im W. T., Lee S. T.. ( 2006;). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. . Int J Syst Evol Microbiol 56:, 2031–2036. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Leifson E.. ( 1960;). Atlas of Bacterial Flagellation. London:: Academic Press;.
    [Google Scholar]
  13. Liu R., Liu H., Zhang C. X., Yang S. Y., Liu X. H., Zhang K. Y., Lai R.. ( 2008;). Sphingobacterium siyangense sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 58:, 1458–1462. [CrossRef][PubMed]
    [Google Scholar]
  14. Matsuyama H., Katoh H., Ohkushi T., Satoh A., Kawahara K., Yumoto I.. ( 2008;). Sphingobacterium kitahiroshimense sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58:, 1576–1579. [CrossRef][PubMed]
    [Google Scholar]
  15. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007;). Sphingobacterium canadense sp. nov., an isolate from corn roots. . Syst Appl Microbiol 30:, 519–524. [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  18. Naka T., Fujiwara N., Yano I., Maeda S., Doe M., Minamino M., Ikeda N., Kato Y., Watabe K.. & other authors ( 2003;). Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. . Biochim Biophys Acta 1635:, 83–92. [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Schmidt V. S., Wenning M., Scherer S.. ( 2012;). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. . Int J Syst Evol Microbiol 62:, 1506–1511. [CrossRef][PubMed]
    [Google Scholar]
  21. Shivaji S., Ray M. K., Shyamala Rao N. S., Saisree L., Jagannadham M. V., Kumar G. S., Reddy G. S. N., Bhargava P. M.. ( 1992;). Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. . Int J Syst Bacteriol 42:, 102–106. [CrossRef]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef][PubMed]
    [Google Scholar]
  24. Takeuchi M., Yokota A.. ( 1992;). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. . J Gen Appl Microbiol 38:, 465–482. [CrossRef]
    [Google Scholar]
  25. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  26. Ten L. N., Liu Q. M., Im W. T., Aslam Z., Lee S. T.. ( 2006;). Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. . J Microbiol Biotechnol 16:, 1728–1733.
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  28. Wei W., Zhou Y., Wang X., Huang X., Lai R.. ( 2008;). Sphingobacterium anhuiense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 58:, 2098–2101. [CrossRef][PubMed]
    [Google Scholar]
  29. Wilson K.. ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Greene Publishing and Wiley-Interscience;.
    [Google Scholar]
  30. Xie C. H., Yokota A.. ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef][PubMed]
    [Google Scholar]
  31. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  32. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N.. ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. . Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
  33. Zhang J., Zheng J.-W., Cho B. C., Hwang C. Y., Fang C. X., He J., Li S.-P.. ( 2012;). Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. . Int J Syst Evol Microbiol 62:, 683–687. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.030155-0
Loading
/content/journal/ijsem/10.1099/ijs.0.030155-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error