1887

Abstract

A novel piezotolerant, mesophilic, facultatively anaerobic, organotrophic, polarly flagellated bacterium (strain LT13a) was isolated from a deep sediment layer in the Nankai Trough (Leg 190, Ocean Drilling Program) off the coast of Japan. This organism used a wide range of organic substrates as sole carbon and energy sources: pyruvate, glutamate, succinate, fumarate, lactate, citrate, peptone and tryptone. Oxygen, nitrate, fumarate, ferric iron and cystine were used as electron acceptors. Maximal growth rates were observed at a hydrostatic pressure of 10 MPa. Hydrostatic pressure for growth was in the range 0·1–50 MPa. Predominant cellular fatty acids were 16 : 17, 15 : 0 iso, 16 : 0 and 13 : 0 iso. The G+C content of the DNA was 44·9 mol%. On the basis of 16S rRNA gene sequences, strain LT13a was shown to belong to the -, being closely related to (98 %), (97 %) and (96 %). Levels of DNA homology between strain LT13a and , and were <20 %, indicating that strain LT13a represents a novel species. Genetic evidence and phenotypic characteristics showed that isolate LT13a constitutes a novel species of the genus . Because of the deep origin of the strain, the name sp. nov. is proposed, with LT13a (=DSM 15900=JCM 12080) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.03007-0
2004-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs541943.html?itemId=/content/journal/ijsem/10.1099/ijs.0.03007-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita, M., Itoh, T., Katayama, Y., Kuraishi, H. & Yamasato, K. ( 1992; ). Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 138, 2275–2281.[CrossRef]
    [Google Scholar]
  2. Bale, S. J., Goodman, K., Rochelle, P. A., Marchesi, J. R., Fry, J. C., Weightman, A. J. & Parkes, R. J. ( 1997; ). Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47, 515–521.[CrossRef]
    [Google Scholar]
  3. Bozal, N., Montes, M. J., Tudela, E., Jiménez, F. & Guinea, J. ( 2002; ). Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52, 195–205.
    [Google Scholar]
  4. Brettar, I. & Höfle, M. G. ( 1993; ). Nitrous oxide producing heterotrophic bacteria from the water column of the central Baltic: abundance and molecular identification. Mar Ecol Prog Ser 94, 253–265.[CrossRef]
    [Google Scholar]
  5. Brettar, I., Christen, R. & Höfle, M. G. ( 2002; ). Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic–anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol 52, 2211–2217.[CrossRef]
    [Google Scholar]
  6. Cragg, B. A., Bale, S. J. & Parkes, R. J. ( 1992a; ). A novel method for the transport and long-term storage of cultures and samples in an anaerobic atmosphere. Lett Appl Microbiol 15, 125–128.[CrossRef]
    [Google Scholar]
  7. Cragg, B. A., Harvey, F. M., Fry, J. C., Herbert, R. A. & Parkes, R. J. ( 1992b; ). Bacterial biomass and activity in the deep sediment layers of the Japan Sea, Hole 798B. In Proceedings of the Ocean Drilling Program, Scientific Results, Leg 128, pp. 761–776. College Station, TX: Texas A&M University.
  8. DeLong, E. F., Franks, D. G. & Yayanos, A. A. ( 1997; ). Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63, 2105–2108.
    [Google Scholar]
  9. Erauso, G., Charbonnier, F., Barbeyron, T., Forterre, P. & Prieur, D. ( 1992; ). Preliminary characterization of a hyperthermophilic archaebacterium with a plasmid, isolated from a North Fiji Basin hydrothermal vent. C R Acad Sci Ser III Sci Vie 314, 387–393.
    [Google Scholar]
  10. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  11. Ghosh, D., Bal, B., Kashyap, V. K. & Pal, S. ( 2003; ). Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl Environ Microbiol 69, 4332–4336.[CrossRef]
    [Google Scholar]
  12. Ivanova, E. P., Sawabe, T., Hayashi, K., Gorshkova, N. M., Zhukova, N. V., Nedashkovskaya, O. I., Mikhailov, V. V., Nicolau, D. V. & Christen, R. ( 2003; ). Shewanella fidelis sp. nov., isolated from sediments and sea water. Int J Syst Evol Microbiol 53, 577–582.[CrossRef]
    [Google Scholar]
  13. Jensen, M. J., Tebo, B. M., Baumann, P., Mandel, M. & Nealson, K. H. ( 1980; ). Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr Microbiol 3, 311–315.[CrossRef]
    [Google Scholar]
  14. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  15. Kato, C. & Nogi, Y. ( 2001; ). Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35, 223–230.[CrossRef]
    [Google Scholar]
  16. Kato, C., Sato, T. & Horikoshi, K. ( 1995; ). Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4, 1–9.[CrossRef]
    [Google Scholar]
  17. Koroleff, F. ( 1969; ). Direct determination of ammonia in natural waters as indophenol blue. In Information on Techniques and Methods for Seawater Analysis, pp. 19–22. Charlottenlund, Denmark: International Council for the Exploration of the Sea.
  18. Lake, J. A. ( 1987; ). A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4, 167–191.
    [Google Scholar]
  19. Leonardo, M. R., Moser, D. P., Barbieri, E., Brantner, C. A., MacGregor, B. J., Paster, B. J., Stackebrandt, E. & Nealson, K. H. ( 1999; ). Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol 49, 1341–1351.[CrossRef]
    [Google Scholar]
  20. Lucas, S., Toffin, L., Zivanovic, Y., Charlier, D., Moussard, H., Forterre, P., Prieur, D. & Erauso, G. ( 2002; ). Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Appl Environ Microbiol 68, 5528–5536.[CrossRef]
    [Google Scholar]
  21. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  22. MacDonell, M. T. & Colwell, R. R. ( 1985; ). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Bacteriol 6, 171–182.
    [Google Scholar]
  23. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  24. Makemson, J. C., Fulayfil, N. R., Landry, W., Van Ert, L. M., Wimpee, C. F., Widder, E. A. & Case, J. M. ( 1997; ). Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47, 1034–1039.[CrossRef]
    [Google Scholar]
  25. Marteinsson, V. T., Watrin, L., Prieur, D., Caprais, J. C., Raguénès, G. & Erauso, G. ( 1995; ). Phenotypic characterization, DNA similarities, and protein profiles of twenty sulfur-metabolizing hyperthermophilic anaerobic archaea isolated from hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 45, 623–632.[CrossRef]
    [Google Scholar]
  26. Mikucki, J. A., Liu, Y., Delwiche, M., Colwell, F. S. & Boone, D. R. ( 2003; ). Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69, 3311–3316.[CrossRef]
    [Google Scholar]
  27. Moore, E. R. B., Arnscheidt, A., Krüger, A., Strömpl, C. & Mau, M. ( 1995; ). Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual, Supplement 4, pp. 1.6.1.1–1.6.1.15. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht: Kluwer.
  28. Moore, G. F., Taira, A., Klaus, A. & 23 other authors ( 2001; ). Deformation and fluid flow processes in the Nankai Trough accretionary prism sites 1173–1178. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 190. College Station, TX: Texas A&M University.
  29. Moser, D. P. & Nealson, K. H. ( 1996; ). Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62, 2100–2105.
    [Google Scholar]
  30. Myers, C. R. & Nealson, K. H. ( 1988; ). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321.[CrossRef]
    [Google Scholar]
  31. Myers, C. R. & Nealson, K. H. ( 1990; ). Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron(III) in Shewanella putrefaciens MR-1. J Bacteriol 172, 6232–6238.
    [Google Scholar]
  32. Nogi, Y., Kato, C. & Horikoshi, K. ( 1998; ). Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170, 331–338.[CrossRef]
    [Google Scholar]
  33. Parkes, R. J., Cragg, B. A., Bale, S. J., Goodman, K. & Fry, J. C. ( 1995; ). A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J Microbiol Methods 23, 235–249.[CrossRef]
    [Google Scholar]
  34. Pfennig, N., Widdel, F. & Trüper, H. G. ( 1981; ). The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, pp. 926–940. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. New York: Springer.
  35. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  36. Satomi, M., Oikawa, H. & Yano, Y. ( 2003; ). Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53, 491–499.[CrossRef]
    [Google Scholar]
  37. Semple, K. M. & Westlake, D. W. S. ( 1987; ). Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 33, 366–371.[CrossRef]
    [Google Scholar]
  38. Slobodkin, A. I., Tourova, T. P., Kuznetsov, B. B., Kostrikina, N. A., Chernyh, N. A. & Bonch-Osmolovskaya, E. A. ( 1999; ). Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49, 1471–1478.[CrossRef]
    [Google Scholar]
  39. Solorzano, L. ( 1969; ). Determination of ammonia in natural waters by the phenol-hypochlorite method. Limnol Oceanogr 14, 799–801.[CrossRef]
    [Google Scholar]
  40. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  41. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  42. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  43. Venkateswaran, K., Dollhopf, M. E., Aller, R., Stackebrandt, E. & Nealson, K. H. ( 1998; ). Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48, 965–972.[CrossRef]
    [Google Scholar]
  44. Venkateswaran, K., Moser, D. P., Dollhopf, M. E. & 10 other authors ( 1999; ). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49, 705–724.[CrossRef]
    [Google Scholar]
  45. Wery, N., Moricet, J.-M., Cueff, V., Jean, J., Pignet, P., Lesongeur, F., Cambon-Bonavita, M.-A. & Barbier, G. ( 2001; ). Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51, 1789–1796.[CrossRef]
    [Google Scholar]
  46. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  47. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.03007-0
Loading
/content/journal/ijsem/10.1099/ijs.0.03007-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1943 – 1949

Fatty acid composition (%) of strain LT13a .

Transmission electron micrograph of strain LT13a in the mid-exponential phase of growth. Bar, 1 µm.

Growth behaviour of species under several pressure conditions.

Polar lipid composition of strain LT13a .

[Single PDF file](1.2 MB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error