1887

Abstract

Two types of heterotrophic sulfate-reducing bacteria (SRB) were isolated from anoxic sediments of hypersaline soda lakes in Kulunda Steppe (Altai, Russia). The isolates used propionate as an energy and carbon source. Strain APT2 was enriched and isolated with thiosulfate as the electron acceptor. Strains APS1 and ASS1 were isolated with sulfate. Strain APT2 was a short rod and motile with a single subpolar flagellum, while strains APS1 and ASS1 were lemon-shaped oval rods and motile with a single polar flagellum and thin flagella-like filaments. Strain APT2 grew by complete oxidation of C–C fatty acids with thiosulfate or sulfate as the electron acceptor, while strains APS1 and ASS1 were much less versatile and utilized only propionate and pyruvate as the electron donor and carbon source with sulfate or sulfite as the electron acceptor. Furthermore, strains APS1 and ASS1 oxidized propionate incompletely to form acetate. All of the isolates were moderately halophilic and obligately alkaliphilic. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolates in the order of the class . Strain APT2 belonged to the family and clustered with a halophilic SRB, PropA. Strains APS1 and ASS1 were closely related to each other and clustered with the genus of the family . On the basis of phenotypic and phylogenetic analysis, the isolates are proposed to represent two novel taxa, gen. nov., sp. nov. (type strain of the type species APT2 = DSM 24257 = UNIQEM U853) and sp. nov. (type strain APS1 = DSM 24258 = UNIQEM U900).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029777-0
2012-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2107.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029777-0&mimeType=html&fmt=ahah

References

  1. Foti M. , Sorokin D. Y. , Lomans B. , Mussman M. , Zacharova E. E. , Pimenov N. V. , Kuenen J. G. , Muyzer G. . ( 2007; ). Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. . Appl Environ Microbiol 73:, 2093–2100. [CrossRef] [PubMed]
    [Google Scholar]
  2. Gorlenko V. M. , Namsaraev B. B. , Kulyrova A. V. , Zavarzina D. G. , Zhilina T. N. . ( 1999; ). Activity of sulfate-reducing bacteria in the sediments of the soda lakes in south-east Transbaikal area. . Microbiology (English translation of Mikrobiologiia) 68:, 580–586.
    [Google Scholar]
  3. Kjeldsen K. U. , Jakobsen T. F. , Glastrup J. , Ingvorsen K. . ( 2010; ). Desulfosalsimonas propionicica gen. nov., sp. nov., a halophilic, sulfate-reducing member of the family Desulfobacteraceae isolated from a salt-lake sediment. . Int J Syst Evol Microbiol 60:, 1060–1065. [CrossRef] [PubMed]
    [Google Scholar]
  4. Knoblauch C. , Sahm K. , Jørgensen B. B. . ( 1999; ). Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov.. Int J Syst Bacteriol 49:, 1631–1643. [CrossRef] [PubMed]
    [Google Scholar]
  5. Kulp T. R. , Hoeft S. E. , Miller L. G. , Saltikov C. , Murphy J. N. , Han S. , Lanoil B. , Oremland R. S. . ( 2006; ). Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. . Appl Environ Microbiol 72:, 6514–6526. [CrossRef] [PubMed]
    [Google Scholar]
  6. Kulp T. R. , Han S. , Saltikov C. W. , Lanoil B. D. , Zargar K. , Oremland R. S. . ( 2007; ). Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. . Appl Environ Microbiol 73:, 5130–5137. [CrossRef] [PubMed]
    [Google Scholar]
  7. Lowry O. H. , Rosebrough N. J. , Farr A. L. , Randall R. J. . ( 1951; ). Protein measurement with the Folin phenol reagent. . J Biol Chem 193:, 265–275.[PubMed]
    [Google Scholar]
  8. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  9. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  10. Pikuta E. V. , Zhilina T. N. , Zavarzin G. A. , Kostrikina N. A. , Osipov G. A. , Rainey F. A. . ( 1998; ). Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. . Microbiology (English translation of Mikrobiologiia) 67:, 105–113.
    [Google Scholar]
  11. Pikuta E. V. , Hoover R. B. , Bej A. K. , Marsic D. , Whitman W. B. , Cleland D. , Krader P. . ( 2003; ). Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. . Int J Syst Evol Microbiol 53:, 1327–1332. [CrossRef] [PubMed]
    [Google Scholar]
  12. Roy A. B. , Trudinger P. A. . ( 1970; ). The Biochemistry of Inorganic Compounds of Sulfur. Cambridge, UK:: Cambridge University Press;.
    [Google Scholar]
  13. Scholten J. C. M. , Joye S. B. , Hollibaugh J. T. , Murrell J. C. . ( 2005; ). Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. . Microb Ecol 50:, 29–39. [CrossRef] [PubMed]
    [Google Scholar]
  14. Sorokin D. Y. , Gorlenko V. M. , Namsaraev B. B. , Namsaraev Z. B. , Lysenko A. M. , Eshinimaev B. T. , Khmelenina V. N. , Trotsenko Y. A. , Kuenen J. G. . ( 2004; ). Prokaryotic communities of the north-eastern Mongolian soda lakes. . Hydrobiologia 522:, 235–248. [CrossRef]
    [Google Scholar]
  15. Sorokin D. Y. , Tourova T. P. , Henstra A. M. , Stams A. J. M. , Galinski E. A. , Muyzer G. . ( 2008; ). Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. . Microbiology 154:, 1444–1453. [CrossRef] [PubMed]
    [Google Scholar]
  16. Sorokin D. Y. , Rusanov I. I. , Pimenov N. V. , Tourova T. P. , Abbas B. , Muyzer G. . ( 2010a; ). Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). . FEMS Microbiol Ecol 73:, 278–290.[PubMed]
    [Google Scholar]
  17. Sorokin D. Y. , Detkova E. N. , Muyzer G. . ( 2010b; ). Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov.. Extremophiles 14:, 71–77. [CrossRef] [PubMed]
    [Google Scholar]
  18. Sorokin D. Y. , Tourova T. P. , Detkova E. N. , Kolganova T. V. , Galinski E. A. , Muyzer G. . ( 2011; ). Cultural diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov. Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov. and Desulfonatronovibrio magnus sp. nov. . Extremophiles 15:, 391–401. [CrossRef]
    [Google Scholar]
  19. Suzuki D. , Ueki A. , Amaishi A. , Ueki K. . ( 2007; ). Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. . Int J Syst Evol Microbiol 57:, 520–526. [CrossRef] [PubMed]
    [Google Scholar]
  20. Taylor J. , Parkes R. J. . ( 1983; ). The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans . . J Gen Microbiol 129:, 3303–3309.
    [Google Scholar]
  21. Trüper H. G. , Schlegel H. G. . ( 1964; ). Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii . . Antonie van Leeuwenhoek 30:, 225–238. [CrossRef] [PubMed]
    [Google Scholar]
  22. Van de Peer Y. , De Wachter R. . ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. . Comput Appl Biosci 10:, 569–570.[PubMed]
    [Google Scholar]
  23. Widdel F. , Pfennig N. . ( 1982; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov.. Arch Microbiol 131:, 360–365. [CrossRef]
    [Google Scholar]
  24. Zhilina T. N. , Zavarzin G. A. , Rainey F. A. , Pikuta E. N. , Osipov G. A. , Kostrikina N. A. . ( 1997; ). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. . Int J Syst Bacteriol 47:, 144–149. [CrossRef] [PubMed]
    [Google Scholar]
  25. Zhilina T. N. , Zavarzina D. G. , Kuever J. , Lysenko A. M. , Zavarzin G. A. . ( 2005; ). Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. . Int J Syst Evol Microbiol 55:, 1001–1006. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029777-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029777-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error