1887

Abstract

The sequences of five conserved genes, in addition to the 16S rRNA gene, were investigated in 30 members of the fam. nov. All members of the examined contained , suggesting that they are capable of nitrogen fixation, which may explain their ability to compete effectively in nitrogen-poor subsurface environments undergoing remediation for petroleum or metal contamination. The phylogenies predicted from , , , and were generally in agreement with the phylogeny predicted from 16S rRNA gene sequences. Furthermore, phylogenetic analysis of concatemers constructed from all five protein-coding genes corresponded closely with the 16S rRNA gene-based phylogeny. This study demonstrated that the is a phylogenetically coherent family within the -subclass of the that is composed of three distinct phylogenetic clusters: , and . The sequence data provided here will make it possible to discriminate better between physiologically distinct members of the , such as and species, in geobacteraceae-dominated microbial communities and greatly expands the potential to identify geobacteraceae sequences in libraries of environmental genomic DNA.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02958-0
2004-09-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541591.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02958-0&mimeType=html&fmt=ahah

References

  1. Achenbach L., Woese C. 1995; 16S and 23S rRNA-like primers. In Archaea: a Laboratory Manual pp  201–203 Edited by Robb F. T., Place A. R., Sowers K. R., Schrier H. J., DasSarma S., Fleishmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  4. Anderson R. T., Vrionis H. A., Ortiz-Bernad I. 10 other authors 2003; Stimulated in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891 [CrossRef]
    [Google Scholar]
  5. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  6. Bazylinski D. A., Dean A. J., Schuler D., Phillips E. J. P., Lovley D. R. 2000; N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273 [CrossRef]
    [Google Scholar]
  7. Berchet V., Thomas T., Cavicchioli R., Russell N. J., Gounot A. M. 2000; Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4:123–130 [CrossRef]
    [Google Scholar]
  8. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. 2002; Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485 [CrossRef]
    [Google Scholar]
  9. Coates J. D., Lonergan D. J., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments. Arch Microbiol 164:406–413 [CrossRef]
    [Google Scholar]
  10. Coppi M. V., Leang C., Sandler S. J., Lovley D. R. 2001; Development of a genetic system for Geobacter sulfurreducens . Appl Environ Microbiol 67:3180–3187 [CrossRef]
    [Google Scholar]
  11. Dahllof I., Baillie H., Kjelleberg S. 2000; rpoB -based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376–3380 [CrossRef]
    [Google Scholar]
  12. Dayhoff M. O. 1978; Survey of new data and computer methods of analysis. In Atlas of Protein Sequence and Structure vol. 5, suppl. 3p– 29 Edited by Dayhoff M. O. Silver Springs, MD: National Biomedical Research Foundation;
    [Google Scholar]
  13. Dehning I., Schink B. 1989; Malonomonas rubra gen. nov., sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433 [CrossRef]
    [Google Scholar]
  14. De Wever H., Cole J. R., Fettig M. R., Hogan D. A., Tiedje J. M. 2000; Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl Environ Microbiol 66:2297–2301 [CrossRef]
    [Google Scholar]
  15. Eden P. A., Schmidt T. M., Blakemore R. P., Pace N. R. 1991; Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41:324–325 [CrossRef]
    [Google Scholar]
  16. Grayson T. H., Cooper L. F., Atienzar F. A., Knowles M. R., Gilpin M. L. 1999; Molecular differentiation of Renibacterium salmoninarum isolates from worldwide locations. Appl Environ Microbiol 65:961–968
    [Google Scholar]
  17. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  18. Holmes D. E., Finneran K. T., O'Neil R. A., Lovley D. R. 2002; Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306 [CrossRef]
    [Google Scholar]
  19. Holmes D. E., Bond D. R., O'Neil R. A., Reimers C. E., Lovley D. R. 2004; Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol (in press
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press Inc;
    [Google Scholar]
  21. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  22. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001 MEGA2: Molecular Evolutionary Genetics Analysis software Tempe, AZ: Arizona State University;
    [Google Scholar]
  23. Leang C., Coppi M. V., Lovley D. R. 2003; OmcB, a c -type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens . J Bacteriol 185:2096–2103 [CrossRef]
    [Google Scholar]
  24. Lee S. H., Kim B. J., Kim J. H., Park K. H., Kim S. J., Kook Y. H. 2000; Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene ( rpoB ) sequences. J Clin Microbiol 38:2557–2562
    [Google Scholar]
  25. Liesack W., Finster K. 1994; Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp.nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758 [CrossRef]
    [Google Scholar]
  26. Lloyd J. R., Leang C., HodgesMyerson A. L., Coppi M. V., Cuifo S., Methe B., Sandler S. J., Lovley D. R. 2003; Biochemical and genetic characterization of PpcA, a periplasmic c -type cytochrome in Geobacter sulfurreducens . Biochem J 369:153–161 [CrossRef]
    [Google Scholar]
  27. Loffler F. E., Sun Q., Li J., Tiedje J. M. 2000; 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374 [CrossRef]
    [Google Scholar]
  28. Lonergan D. J., Jenter H., Coates J. D., Phillips E. J. P., Schmidt T., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  29. Lovley D. R. 2000a; Fe(III) and Mn(IV) reduction. In Environmental Microbe–Metal Interactions pp  3–29 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Lovley D. R. 2000b Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  31. Lovley D. R. 2002; Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter. OMICS 6:331–339 [CrossRef]
    [Google Scholar]
  32. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  33. Lovley D. R., Phillips E. J. P., Lonergan D. J., Widman P. K. 1995; Fe(III) and S0 reduction by Pelobacter carbinolicus . Appl Environ Microbiol 61:2132–2138
    [Google Scholar]
  34. Maréchal J., Clement B., Nalin R., Gandon C., Orso S., Cvejic J. H., Bruneteau M., Berry A., Normand P. 2000; A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus . Int J Syst Evol Microbiol 50:781–785 [CrossRef]
    [Google Scholar]
  35. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  36. Nevin K. P., Holmes D. E., Lovley D. R. 2003; Fe(III) reduction in the Geobacteraceae , Malonomonas rubra and Trichlorobacter thiogenes . In Abstracts of the 103rd General Meeting of the American Society for Microbiology Washington, DC: 18–22 May 2003 abstract Q-316, p. 571
    [Google Scholar]
  37. Nottingham P. M., Hungate R. E. 1969; Methanogenic fermentation of benzoate. J Bacteriol 98:1170–1172
    [Google Scholar]
  38. Peixoto R. S., da Costa Coutinho H. L., Rumjanek N. G., Macrae A., Rosado A. S. 2002; Use of rpoB and 16S rRNA genes to analyze bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol 35:316–320 [CrossRef]
    [Google Scholar]
  39. Phillips E. J. P., Lovley D. R. 1987; Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Sci Soc Am J 51:938–941 [CrossRef]
    [Google Scholar]
  40. Roling W. F. M., van Breukelen B. M., Braster B. L., van Verseveld H. W. 2001; Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629 [CrossRef]
    [Google Scholar]
  41. Rooney-Varga J. N., Anderson R. T., Fraga J. L., Ringelberg D., Lovley D. R. 1999; Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063
    [Google Scholar]
  42. Schink B. 1984; Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41 [CrossRef]
    [Google Scholar]
  43. Schink B. 1985; Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301 [CrossRef]
    [Google Scholar]
  44. Schink B. 1992; The genus Pelobacter . In The Prokaryotes pp  3393–3399 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  45. Schink B., Pfennig N. 1982; Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov. a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201 [CrossRef]
    [Google Scholar]
  46. Schink B., Stieb M. 1983; Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-spore-forming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913
    [Google Scholar]
  47. Snoeyenbos-West O. L., Nevin K. P., Anderson R. T., Lovley D. R. 2000; Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39:153–167 [CrossRef]
    [Google Scholar]
  48. Stein L. Y., La Duc M. T., Grundl T. J., Nealson K. H. 2001; Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18 [CrossRef]
    [Google Scholar]
  49. Sung Y., Ritalahti K. M., Sanford R. A., Urbance J. W., Flynn S. J., Tiedje J. M., Loffler F. E. 2003; Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974 [CrossRef]
    [Google Scholar]
  50. Swofford D. L. 1998 PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  51. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  52. Tender L. M., Reimers C. E., Stecher H. A., Holmes D. E., Bond D. R., Lowy D. A., Pilobello K., Fertig S. J., Lovley D. R. 2002; Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825 [CrossRef]
    [Google Scholar]
  53. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  54. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  55. Ueda T., Suga Y., Yahiro N., Matsuguchi T. 1995; Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can J Microbiol 41:235–240 [CrossRef]
    [Google Scholar]
  56. Yamamoto S., Bouvet P. J. M., Harayama S. 1999; Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02958-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02958-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error