1887

Abstract

The sequences of five conserved genes, in addition to the 16S rRNA gene, were investigated in 30 members of the fam. nov. All members of the examined contained , suggesting that they are capable of nitrogen fixation, which may explain their ability to compete effectively in nitrogen-poor subsurface environments undergoing remediation for petroleum or metal contamination. The phylogenies predicted from , , , and were generally in agreement with the phylogeny predicted from 16S rRNA gene sequences. Furthermore, phylogenetic analysis of concatemers constructed from all five protein-coding genes corresponded closely with the 16S rRNA gene-based phylogeny. This study demonstrated that the is a phylogenetically coherent family within the -subclass of the that is composed of three distinct phylogenetic clusters: , and . The sequence data provided here will make it possible to discriminate better between physiologically distinct members of the , such as and species, in geobacteraceae-dominated microbial communities and greatly expands the potential to identify geobacteraceae sequences in libraries of environmental genomic DNA.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02958-0
2004-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541591.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02958-0&mimeType=html&fmt=ahah

References

  1. Achenbach, L. & Woese, C. ( 1995; ). 16S and 23S rRNA-like primers. In Archaea: a Laboratory Manual, pp 201–203. Edited by F. T. Robb, A. R. Place, K. R. Sowers, H. J. Schrier, S. DasSarma & E. M. Fleishmann. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  4. Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I. & 10 other authors ( 2003; ). Stimulated in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69, 5884–5891.[CrossRef]
    [Google Scholar]
  5. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  6. Bazylinski, D. A., Dean, A. J., Schuler, D., Phillips, E. J. P. & Lovley, D. R. ( 2000; ). N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2, 266–273.[CrossRef]
    [Google Scholar]
  7. Berchet, V., Thomas, T., Cavicchioli, R., Russell, N. J. & Gounot, A. M. ( 2000; ). Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4, 123–130.[CrossRef]
    [Google Scholar]
  8. Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. ( 2002; ). Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485.[CrossRef]
    [Google Scholar]
  9. Coates, J. D., Lonergan, D. J. & Lovley, D. R. ( 1995; ). Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments. Arch Microbiol 164, 406–413.[CrossRef]
    [Google Scholar]
  10. Coppi, M. V., Leang, C., Sandler, S. J. & Lovley, D. R. ( 2001; ). Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67, 3180–3187.[CrossRef]
    [Google Scholar]
  11. Dahllof, I., Baillie, H. & Kjelleberg, S. ( 2000; ). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66, 3376–3380.[CrossRef]
    [Google Scholar]
  12. Dayhoff, M. O. ( 1978; ). Survey of new data and computer methods of analysis. In Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, p. 29. Edited by M. O. Dayhoff. Silver Springs, MD: National Biomedical Research Foundation.
  13. Dehning, I. & Schink, B. ( 1989; ). Malonomonas rubra gen. nov., sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151, 427–433.[CrossRef]
    [Google Scholar]
  14. De Wever, H., Cole, J. R., Fettig, M. R., Hogan, D. A. & Tiedje, J. M. ( 2000; ). Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl Environ Microbiol 66, 2297–2301.[CrossRef]
    [Google Scholar]
  15. Eden, P. A., Schmidt, T. M., Blakemore, R. P. & Pace, N. R. ( 1991; ). Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41, 324–325.[CrossRef]
    [Google Scholar]
  16. Grayson, T. H., Cooper, L. F., Atienzar, F. A., Knowles, M. R. & Gilpin, M. L. ( 1999; ). Molecular differentiation of Renibacterium salmoninarum isolates from worldwide locations. Appl Environ Microbiol 65, 961–968.
    [Google Scholar]
  17. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  18. Holmes, D. E., Finneran, K. T., O'Neil, R. A. & Lovley, D. R. ( 2002; ). Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68, 2300–2306.[CrossRef]
    [Google Scholar]
  19. Holmes, D. E., Bond, D. R., O'Neil, R. A., Reimers, C. E. & Lovley, D. R. ( 2004; ). Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol (in press).
    [Google Scholar]
  20. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press Inc.
  21. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  22. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). MEGA2: Molecular Evolutionary Genetics Analysis software. Tempe, AZ: Arizona State University.
  23. Leang, C., Coppi, M. V. & Lovley, D. R. ( 2003; ). OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185, 2096–2103.[CrossRef]
    [Google Scholar]
  24. Lee, S. H., Kim, B. J., Kim, J. H., Park, K. H., Kim, S. J. & Kook, Y. H. ( 2000; ). Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences. J Clin Microbiol 38, 2557–2562.
    [Google Scholar]
  25. Liesack, W. & Finster, K. ( 1994; ). Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44, 753–758.[CrossRef]
    [Google Scholar]
  26. Lloyd, J. R., Leang, C., HodgesMyerson, A. L., Coppi, M. V., Cuifo, S., Methe, B., Sandler, S. J. & Lovley, D. R. ( 2003; ). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369, 153–161.[CrossRef]
    [Google Scholar]
  27. Loffler, F. E., Sun, Q., Li, J. & Tiedje, J. M. ( 2000; ). 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66, 1369–1374.[CrossRef]
    [Google Scholar]
  28. Lonergan, D. J., Jenter, H., Coates, J. D., Phillips, E. J. P., Schmidt, T. & Lovley, D. R. ( 1996; ). Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178, 2402–2408.
    [Google Scholar]
  29. Lovley, D. R. ( 2000a; ). Fe(III) and Mn(IV) reduction. In Environmental Microbe–Metal Interactions, pp. 3–29. Edited by D. R. Lovley. Washington, DC: American Society for Microbiology.
  30. Lovley, D. R. ( 2000b; ). Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer. http://141.150.157.117:8080/prokPUB/index.htm
  31. Lovley, D. R. ( 2002; ). Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter. OMICS 6, 331–339.[CrossRef]
    [Google Scholar]
  32. Lovley, D. R. & Phillips, E. J. P. ( 1988; ). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.
    [Google Scholar]
  33. Lovley, D. R., Phillips, E. J. P., Lonergan, D. J. & Widman, P. K. ( 1995; ). Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61, 2132–2138.
    [Google Scholar]
  34. Maréchal, J., Clement, B., Nalin, R., Gandon, C., Orso, S., Cvejic, J. H., Bruneteau, M., Berry, A. & Normand, P. ( 2000; ). A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus. Int J Syst Evol Microbiol 50, 781–785.[CrossRef]
    [Google Scholar]
  35. Nei, M. & Gojobori, T. ( 1986; ). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3, 418–426.
    [Google Scholar]
  36. Nevin, K. P., Holmes, D. E. & Lovley, D. R. ( 2003; ). Fe(III) reduction in the Geobacteraceae, Malonomonas rubra and Trichlorobacter thiogenes. In Abstracts of the 103rd General Meeting of the American Society for Microbiology, Washington, DC, 18–22 May 2003, abstract Q-316, p. 571.
  37. Nottingham, P. M. & Hungate, R. E. ( 1969; ). Methanogenic fermentation of benzoate. J Bacteriol 98, 1170–1172.
    [Google Scholar]
  38. Peixoto, R. S., da Costa Coutinho, H. L., Rumjanek, N. G., Macrae, A. & Rosado, A. S. ( 2002; ). Use of rpoB and 16S rRNA genes to analyze bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol 35, 316–320.[CrossRef]
    [Google Scholar]
  39. Phillips, E. J. P. & Lovley, D. R. ( 1987; ). Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Sci Soc Am J 51, 938–941.[CrossRef]
    [Google Scholar]
  40. Roling, W. F. M., van Breukelen, B. M., Braster, B. L. & van Verseveld, H. W. ( 2001; ). Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67, 4619–4629.[CrossRef]
    [Google Scholar]
  41. Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg, D. & Lovley, D. R. ( 1999; ). Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65, 3056–3063.
    [Google Scholar]
  42. Schink, B. ( 1984; ). Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137, 33–41.[CrossRef]
    [Google Scholar]
  43. Schink, B. ( 1985; ). Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142, 295–301.[CrossRef]
    [Google Scholar]
  44. Schink, B. ( 1992; ). The genus Pelobacter. In The Prokaryotes, pp. 3393–3399. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  45. Schink, B. & Pfennig, N. ( 1982; ). Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133, 195–201.[CrossRef]
    [Google Scholar]
  46. Schink, B. & Stieb, M. ( 1983; ). Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-spore-forming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45, 1905–1913.
    [Google Scholar]
  47. Snoeyenbos-West, O. L., Nevin, K. P., Anderson, R. T. & Lovley, D. R. ( 2000; ). Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39, 153–167.[CrossRef]
    [Google Scholar]
  48. Stein, L. Y., La Duc, M. T., Grundl, T. J. & Nealson, K. H. ( 2001; ). Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3, 10–18.[CrossRef]
    [Google Scholar]
  49. Sung, Y., Ritalahti, K. M., Sanford, R. A., Urbance, J. W., Flynn, S. J., Tiedje, J. M. & Loffler, F. E. ( 2003; ). Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69, 2964–2974.[CrossRef]
    [Google Scholar]
  50. Swofford, D. L. ( 1998; ). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  51. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  52. Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., Pilobello, K., Fertig, S. J. & Lovley, D. R. ( 2002; ). Harnessing microbially generated power on the seafloor. Nat Biotechnol 20, 821–825.[CrossRef]
    [Google Scholar]
  53. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  54. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  55. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995; ). Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can J Microbiol 41, 235–240.[CrossRef]
    [Google Scholar]
  56. Yamamoto, S., Bouvet, P. J. M. & Harayama, S. ( 1999; ). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49, 87–95.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02958-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02958-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1591 - 1599

Ranges of genetic and synonymous distances calculated for 16S rRNA, , , , and genes within the four predominant genera of the . [PDF](14 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error