Skip to content
1887

Abstract

The sequences of five conserved genes, in addition to the 16S rRNA gene, were investigated in 30 members of the fam. nov. All members of the examined contained , suggesting that they are capable of nitrogen fixation, which may explain their ability to compete effectively in nitrogen-poor subsurface environments undergoing remediation for petroleum or metal contamination. The phylogenies predicted from , , , and were generally in agreement with the phylogeny predicted from 16S rRNA gene sequences. Furthermore, phylogenetic analysis of concatemers constructed from all five protein-coding genes corresponded closely with the 16S rRNA gene-based phylogeny. This study demonstrated that the is a phylogenetically coherent family within the -subclass of the that is composed of three distinct phylogenetic clusters: , and . The sequence data provided here will make it possible to discriminate better between physiologically distinct members of the , such as and species, in geobacteraceae-dominated microbial communities and greatly expands the potential to identify geobacteraceae sequences in libraries of environmental genomic DNA.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02958-0
2004-09-01
2025-05-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541591.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02958-0&mimeType=html&fmt=ahah

References

  1. Achenbach L., Woese C. 1995; 16S and 23S rRNA-like primers. In Archaea: a Laboratory Manual pp  201–203 Edited by Robb F. T., Place A. R., Sowers K. R., Schrier H. J., DasSarma S., Fleishmann E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  4. Anderson R. T., Vrionis H. A., Ortiz-Bernad I. 10 other authors 2003; Stimulated in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891 [CrossRef]
    [Google Scholar]
  5. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  6. Bazylinski D. A., Dean A. J., Schuler D., Phillips E. J. P., Lovley D. R. 2000; N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273 [CrossRef]
    [Google Scholar]
  7. Berchet V., Thomas T., Cavicchioli R., Russell N. J., Gounot A. M. 2000; Structural analysis of the elongation factor G protein from the low-temperature-adapted bacterium Arthrobacter globiformis SI55. Extremophiles 4:123–130 [CrossRef]
    [Google Scholar]
  8. Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. 2002; Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485 [CrossRef]
    [Google Scholar]
  9. Coates J. D., Lonergan D. J., Lovley D. R. 1995; Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments. Arch Microbiol 164:406–413 [CrossRef]
    [Google Scholar]
  10. Coppi M. V., Leang C., Sandler S. J., Lovley D. R. 2001; Development of a genetic system for Geobacter sulfurreducens . Appl Environ Microbiol 67:3180–3187 [CrossRef]
    [Google Scholar]
  11. Dahllof I., Baillie H., Kjelleberg S. 2000; rpoB -based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376–3380 [CrossRef]
    [Google Scholar]
  12. Dayhoff M. O. 1978; Survey of new data and computer methods of analysis. In Atlas of Protein Sequence and Structure vol. 5, suppl. 3p– 29 Edited by Dayhoff M. O. Silver Springs, MD: National Biomedical Research Foundation;
    [Google Scholar]
  13. Dehning I., Schink B. 1989; Malonomonas rubra gen. nov., sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433 [CrossRef]
    [Google Scholar]
  14. De Wever H., Cole J. R., Fettig M. R., Hogan D. A., Tiedje J. M. 2000; Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl Environ Microbiol 66:2297–2301 [CrossRef]
    [Google Scholar]
  15. Eden P. A., Schmidt T. M., Blakemore R. P., Pace N. R. 1991; Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41:324–325 [CrossRef]
    [Google Scholar]
  16. Grayson T. H., Cooper L. F., Atienzar F. A., Knowles M. R., Gilpin M. L. 1999; Molecular differentiation of Renibacterium salmoninarum isolates from worldwide locations. Appl Environ Microbiol 65:961–968
    [Google Scholar]
  17. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  18. Holmes D. E., Finneran K. T., O'Neil R. A., Lovley D. R. 2002; Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306 [CrossRef]
    [Google Scholar]
  19. Holmes D. E., Bond D. R., O'Neil R. A., Reimers C. E., Lovley D. R. 2004; Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol (in press
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press Inc;
    [Google Scholar]
  21. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  22. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001 MEGA2: Molecular Evolutionary Genetics Analysis software Tempe, AZ: Arizona State University;
    [Google Scholar]
  23. Leang C., Coppi M. V., Lovley D. R. 2003; OmcB, a c -type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens . J Bacteriol 185:2096–2103 [CrossRef]
    [Google Scholar]
  24. Lee S. H., Kim B. J., Kim J. H., Park K. H., Kim S. J., Kook Y. H. 2000; Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene ( rpoB ) sequences. J Clin Microbiol 38:2557–2562
    [Google Scholar]
  25. Liesack W., Finster K. 1994; Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp.nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758 [CrossRef]
    [Google Scholar]
  26. Lloyd J. R., Leang C., HodgesMyerson A. L., Coppi M. V., Cuifo S., Methe B., Sandler S. J., Lovley D. R. 2003; Biochemical and genetic characterization of PpcA, a periplasmic c -type cytochrome in Geobacter sulfurreducens . Biochem J 369:153–161 [CrossRef]
    [Google Scholar]
  27. Loffler F. E., Sun Q., Li J., Tiedje J. M. 2000; 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374 [CrossRef]
    [Google Scholar]
  28. Lonergan D. J., Jenter H., Coates J. D., Phillips E. J. P., Schmidt T., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  29. Lovley D. R. 2000a; Fe(III) and Mn(IV) reduction. In Environmental Microbe–Metal Interactions pp  3–29 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Lovley D. R. 2000b Fe(III)- and Mn(IV)-reducing prokaryotes. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  31. Lovley D. R. 2002; Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter. OMICS 6:331–339 [CrossRef]
    [Google Scholar]
  32. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  33. Lovley D. R., Phillips E. J. P., Lonergan D. J., Widman P. K. 1995; Fe(III) and S0 reduction by Pelobacter carbinolicus . Appl Environ Microbiol 61:2132–2138
    [Google Scholar]
  34. Maréchal J., Clement B., Nalin R., Gandon C., Orso S., Cvejic J. H., Bruneteau M., Berry A., Normand P. 2000; A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus . Int J Syst Evol Microbiol 50:781–785 [CrossRef]
    [Google Scholar]
  35. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  36. Nevin K. P., Holmes D. E., Lovley D. R. 2003; Fe(III) reduction in the Geobacteraceae , Malonomonas rubra and Trichlorobacter thiogenes . In Abstracts of the 103rd General Meeting of the American Society for Microbiology Washington, DC: 18–22 May 2003 abstract Q-316, p. 571
    [Google Scholar]
  37. Nottingham P. M., Hungate R. E. 1969; Methanogenic fermentation of benzoate. J Bacteriol 98:1170–1172
    [Google Scholar]
  38. Peixoto R. S., da Costa Coutinho H. L., Rumjanek N. G., Macrae A., Rosado A. S. 2002; Use of rpoB and 16S rRNA genes to analyze bacterial diversity of a tropical soil using PCR and DGGE. Lett Appl Microbiol 35:316–320 [CrossRef]
    [Google Scholar]
  39. Phillips E. J. P., Lovley D. R. 1987; Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Sci Soc Am J 51:938–941 [CrossRef]
    [Google Scholar]
  40. Roling W. F. M., van Breukelen B. M., Braster B. L., van Verseveld H. W. 2001; Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629 [CrossRef]
    [Google Scholar]
  41. Rooney-Varga J. N., Anderson R. T., Fraga J. L., Ringelberg D., Lovley D. R. 1999; Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063
    [Google Scholar]
  42. Schink B. 1984; Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41 [CrossRef]
    [Google Scholar]
  43. Schink B. 1985; Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301 [CrossRef]
    [Google Scholar]
  44. Schink B. 1992; The genus Pelobacter . In The Prokaryotes pp  3393–3399 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  45. Schink B., Pfennig N. 1982; Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov. a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201 [CrossRef]
    [Google Scholar]
  46. Schink B., Stieb M. 1983; Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-spore-forming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913
    [Google Scholar]
  47. Snoeyenbos-West O. L., Nevin K. P., Anderson R. T., Lovley D. R. 2000; Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39:153–167 [CrossRef]
    [Google Scholar]
  48. Stein L. Y., La Duc M. T., Grundl T. J., Nealson K. H. 2001; Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18 [CrossRef]
    [Google Scholar]
  49. Sung Y., Ritalahti K. M., Sanford R. A., Urbance J. W., Flynn S. J., Tiedje J. M., Loffler F. E. 2003; Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974 [CrossRef]
    [Google Scholar]
  50. Swofford D. L. 1998 PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  51. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  52. Tender L. M., Reimers C. E., Stecher H. A., Holmes D. E., Bond D. R., Lowy D. A., Pilobello K., Fertig S. J., Lovley D. R. 2002; Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825 [CrossRef]
    [Google Scholar]
  53. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  54. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  55. Ueda T., Suga Y., Yahiro N., Matsuguchi T. 1995; Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can J Microbiol 41:235–240 [CrossRef]
    [Google Scholar]
  56. Yamamoto S., Bouvet P. J. M., Harayama S. 1999; Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02958-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02958-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error