1887

Abstract

A novel actinomycete, designated strain DLS-45, was isolated from soil from the surface of a rock collected from the peak of Darangshi Oreum (Small Mountain) in Jeju, Republic of Korea. Substrate mycelium was well developed, but aerial mycelium was scant on most of the media tested. Spherical to subspherical spores on the aerial mycelium were in chains that were arranged in hooks and their surfaces were warty. The combination of morphological and chemical features supported the classification of the new isolate in the genus . The neighbour-joining tree based on 16S rRNA gene sequences showed that the strain belonged to the family and formed a coherent cluster with IMSNU 22169 (98.0 % sequence similarity). The other closest relatives were 3-46-b(3) (98.2 %) and 3-25-a(11) (97.9 %). Levels of DNA–DNA relatedness between strain DLS-45 and the type strains of the phylogenetic relatives were less than 17 %. A battery of phenotypic, genotypic and DNA–DNA relatedness data indicated that strain DLS-45 represented a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain DLS-45 ( = KCTC 19558 = DSM 45252).

Funding
This study was supported by the:
  • 21C Frontier Microbial Genomics and Application Center Program, Ministry of Science and Technology, Republic of Korea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029546-0
2012-01-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/217.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029546-0&mimeType=html&fmt=ahah

References

  1. Ara I., Matsumoto A., Bakir M. A., Kudo T., Ōmura S., Takahashi Y. 2008; Actinomadura bangladeshensis sp. nov. and Actinomadura chokoriensis sp. nov.. Int J Syst Evol Microbiol 58:1653–1659 [View Article][PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  5. Felsenstein J. 2002; phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Fitch W. M. 1971; Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  7. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  8. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics pp. 173–199 Edited by Goodfellow M., Minnikin D. E. New York: Academic Press;
    [Google Scholar]
  11. Lee S. D., Kang S.-O., Hah Y. C. 2000; Hongia gen. nov., a new genus of the order Actinomycetales . Int J Syst Evol Microbiol 50:191–199 [View Article][PubMed]
    [Google Scholar]
  12. MacFaddin J. F. 1980 Biochemical Tests for Identification of Medical Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  14. Meyer J. 1989; Genus Actinomadura . In Bergey’s Manual of Systematic Bacteriology pp. 2511–2526 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88:200–204 [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M. 1980; Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188:221–233 [View Article]
    [Google Scholar]
  17. Miyadoh S., Miyara T. 2001; Family Thermomonosporaceae. In Identification Manual of Actinomycetes pp. 281–291 the Society for Actinomycetes, Japan Tokyo: Business Center for Academic Societies;
    [Google Scholar]
  18. Prauser H., Bergholz M. 1974; Taxonomy of actinomycetes and screening for antibiotic substances. Postepy Hig Med Dosw 28:441–457[PubMed]
    [Google Scholar]
  19. Promnuan Y., Kudo T., Ohkuma M., Chantawannakul P. 2011; Actinomadura apis sp. nov., isolated from a honey bee (Apis mellifera) hive, and the reclassification of Actinomadura cremea subsp. rifamycini Gauze et al. 1987 as Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov.. Int J Syst Evol Microbiol 61:2271–2277 [View Article][PubMed]
    [Google Scholar]
  20. Saddler G. S., Tavecchia P., Lociuro S., Zanol M., Colombo E., Selva E. 1991; Analysis of madurose and other actinomycete whole cell sugars by gas chromatography. J Microbiol Methods 14:185–191 [View Article]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Seo S. H., Lee S. D. 2010; Dactylosporangium darangshiense sp. nov., isolated from rock soil. Int J Syst Evol Microbiol 60:1256–1260 [View Article][PubMed]
    [Google Scholar]
  23. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  24. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  25. Tamura T., Ishida Y., Nozawa Y., Otoguro M., Suzuki K.-I. 2009; Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov.. Int J Syst Evol Microbiol 59:1867–1874 [View Article][PubMed]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  27. Trujillo M. E., Goodfellow M. 2003; Numerical phenetic classification of clinically significant aerobic sporoactinomycetes and related organisms. Antonie van Leeuwenhoek 84:39–68 [View Article][PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  29. Yoon J.-H., Park S., Kang S.-J., Lee J.-S., Lee K. C., Oh T.-K. 2010; Nocardioides daedukensis sp. nov., a halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 60:1334–1338 [View Article][PubMed]
    [Google Scholar]
  30. Zhang Z. S., Wang Y., Ruan J. S. 1998; Reclassification of Thermomonospora and Microtetraspora . Int J Syst Bacteriol 48:411–422[PubMed] [CrossRef]
    [Google Scholar]
  31. Zhang Z., Kudo T., Nakajima Y., Wang Y. 2001; Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:373–383[PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.029546-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029546-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error