1887

Abstract

The genus and the species were recharacterized by using the type strain (NRIC 0498), three reference strains and 10 methanol-utilizing bacteria that were isolated from activated sludge from three different sewage-treatment plants in Tokyo. Based on 16S rDNA sequences, all strains formed a single cluster within the that was clearly different from the genera , , , and . The 14 strains were identified as a single species, , by DNA–DNA similarities, showed DNA G+C contents that ranged from 62 to 63 mol% and had Q-10 as the major quinone, accounting for >87 % of total ubiquinones. Cells of had a single polar flagellum (or occasionally polar tuft flagella); this differs from a previous study that described peritrichous flagella. Oxidation of acetate was positive for all strains, but oxidation of lactate was weakly positive and varied with strains. Dihydroxyacetone was not produced from glycerol. Pantothenic acid was an essential requirement for growth. The strains tested grew at mostly the same extent at pH 3·0–8·0. Therefore, should be regarded as acidotolerant, not acidophilic. The descriptions of the genus and the species Urakami, Tamaoka, Suzuki and Komagata 1989 are emended with newly obtained data.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02946-0
2004-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/3/ijs540865.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02946-0&mimeType=html&fmt=ahah

References

  1. Asai, T., Iizuka, H. & Komagata, K. ( 1964; ). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10, 95–126.[CrossRef]
    [Google Scholar]
  2. Boesch, C., Trček, J., Sievers, M. & Teuber, M. ( 1998; ). Acetobacter intermedius, sp. nov. Syst Appl Microbiol 21, 220–229.[CrossRef]
    [Google Scholar]
  3. Brosius, J., Dull, T. J., Sleeter, D. D. & Noller, H. F. ( 1981; ). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef]
    [Google Scholar]
  4. Bulygina, E. S., Galchenko, V. F., Govorukhina, N. I., Netrusov, A. I., Nikitin, D. I., Trotsenko, Y. A. & Chumakov, K. M. ( 1990; ). Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing. J Gen Microbiol 136, 441–446.[CrossRef]
    [Google Scholar]
  5. Bulygina, E. S., Gulikova, O. M., Dikanskaya, E. M., Netrusov, A. I., Tourova, T. P. & Chumakov, K. M. ( 1992; ). Taxonomic studies of the genera Acidomonas, Acetobacter and Gluconobacter by 5S ribosomal RNA sequencing. J Gen Microbiol 138, 2283–2286.[CrossRef]
    [Google Scholar]
  6. Bulygina, E. S., Chumakov, K. M. & Netrusov, A. I. ( 1993; ). Systematics of Gram-negative methylotrophic bacteria based on 5S rRNA sequences. In Microbial Growth on C1 Compounds, pp. 275–284. Edited by J. C. Murrell & D. P. Kelley. Andover, UK: Intercept.
  7. Christensen, W. B. ( 1946; ). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52, 461–466.
    [Google Scholar]
  8. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  10. Green, P. N. ( 1993; ). Overview of the current state of methylotroph taxonomy. In Microbial Growth on C1 Compounds, pp. 253–265. Edited by J. C. Murrell & D. P. Kelley. Andover, UK: Intercept.
  11. Janssens, D., Vereecke, C., Vanhonacker, K. & 7 other editors ( 1998; ). BCCM LMG Catalogue Bacteria 1998. Brussels: Belgian Office for Scientific, Technical and Cultural Affairs.
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Komagata, K. ( 1990; ). Systematics of methanol-utilizing bacteria. FEMS Microbiol Rev 87, 291–296.[CrossRef]
    [Google Scholar]
  14. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19, 161–206.
    [Google Scholar]
  15. Leifson, E. ( 1954; ). The flagellation and taxonomy of species of Acetobacter. Antonie van Leeuwenhoek 20, 102–110.[CrossRef]
    [Google Scholar]
  16. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2000; ). Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 46, 147–165.[CrossRef]
    [Google Scholar]
  17. Saito, H. & Miura, K. ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef]
    [Google Scholar]
  18. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Shimwell, J. L., Carr, J. G. & Rhodes, M. E. ( 1960; ). Differentiation of Acetomonas and Pseudomonas. J Gen Microbiol 23, 283–286.[CrossRef]
    [Google Scholar]
  20. Sievers, M., Ludwig, W. & Teuber, M. ( 1994; ). Revival of the species Acetobacter methanolicus (ex Uhlig et al. 1986 ) nom. rev. Syst Appl Microbiol 17, 352–354.[CrossRef]
    [Google Scholar]
  21. Steudel, A., Miethe, D. & Babel, W. ( 1980; ). Bakterium MB58, ein methylotrophes “Essigsäurebakterien”. Z Allg Mikrobiol 20, 663–672 (in German).[CrossRef]
    [Google Scholar]
  22. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  24. Uhlig, H., Karbaum, K. & Steudel, A. ( 1986; ). Acetobacter methanolicus sp. nov., an acidophilic facultatively methylotrophic bacterium. Int J Syst Bacteriol 36, 317–322.[CrossRef]
    [Google Scholar]
  25. Urakami, T. & Komagata, K. ( 1987; ). Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in Gram-negative methanol-, methane-, and methylamine-utilizing bacteria. J Gen Appl Microbiol 33, 135–165.[CrossRef]
    [Google Scholar]
  26. Urakami, T., Terao, I. & Nagai, I. ( 1981; ). Process for producing bacterial single cell protein from methanol. In Microbial Growth on C1 Compounds, pp. 349–359. Edited by H. Dalton. London: Heyden.
  27. Urakami, T., Tamaoka, J. & Komagata, K. ( 1985; ). DNA base composition and DNA-DNA homologies of methanol-utilizing bacteria. J Gen Appl Microbiol 31, 243–253.[CrossRef]
    [Google Scholar]
  28. Urakami, T., Tamaoka, J., Suzuki, K. & Komagata, K. ( 1989; ). Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39, 50–55.[CrossRef]
    [Google Scholar]
  29. Yamada, Y., Hoshino, K. & Ishikawa, T. ( 1997; ). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61, 1244–1251.[CrossRef]
    [Google Scholar]
  30. Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T. & Komagata, K. ( 2000; ). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50, 823–829.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02946-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02946-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error