1887

Abstract

Caves have generally been found to host phototrophic micro-organisms from various taxonomic groups, with cyanobacteria comprising an important group that have adapted to these stable and highly specific environments. A polyphasic study based on aspects of classical morphology and molecular data revealed two new monospecific genera from fresh material of Greek and Spanish caves. Both taxa are characterized by obligatory true branching (T-type, V-type and false branching), the presence of heterocysts, and reproduction by hormocysts and akinetes. They shared some similarities in their morphological characteristics as revealed by light, scanning electron and transmission electron microscopy, but phylogenetic analysis based on 16S rRNA gene sequences showed that the two phylotypes were different (89.8 % similarity); this represents an example of shared morphology in genetically different strains of cave-adapted species. Phenotypic and genetic traits strongly support classification of the phylotypes as independent taxa in the order Stigonematales (the most differentiated and complicated group of cyanobacteria), family Loriellaceae Geitl 1925. Hence, the names Lamprinou and Pantazidou gen. nov., sp. nov. and Hernández-Mariné and Canals gen. nov., sp. nov. are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.029223-0
2011-12-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2907.html?itemId=/content/journal/ijsem/10.1099/ijs.0.029223-0&mimeType=html&fmt=ahah

References

  1. Abdelahad N. . ( 1989; ). On four Myxosarcina-like species (Cyanophyta) living in the Inferniglio cave (Italy). . Algol Stud 54:, 3–13.
    [Google Scholar]
  2. Aboal M. , Asencio A. D. , Prefasi M. . ( 1994; ). Studies on cave cyanophytes from southeastern Spain: Scytonema julianum (Meneghini ex Franck) Richter. . Algol Stud 75:, 31–36.
    [Google Scholar]
  3. Anagnostidis K. , Komárek J. . ( 1985; ). Modern approach to the classification system of cyanophytes. 1 – Introduction. . Algol Stud 38/39:, 291–302.
    [Google Scholar]
  4. Anagnostidis K. , Komárek J. . ( 1988; ). Modern approach to the classification system of cyanophytes. 3 – Oscillatoriales. . Algol Stud 50–53:, 327–472.
    [Google Scholar]
  5. Anagnostidis K. , Komárek J. . ( 1990; ). Modern approach to the classification system of cyanophytes. 5 – Stigonematales. . Algol Stud 59:, 1–73.
    [Google Scholar]
  6. Anagnostidis K. , Economou-Amili A. , Pantazidou A. . ( 1982; ). Studies on the microflora of the cave Perama, Ioannina, Greece. . Bull Soc Spéléol Grèce 18:, 458–530.
    [Google Scholar]
  7. Ariño X. , Hernández-Mariné M. , Saiz-Jiménez C. . ( 1997; ). Colonization of Roman tombs by calcifying cyanobacteria. . Phycologia 36:, 366–373. [CrossRef]
    [Google Scholar]
  8. Asencio A. , Aboal M. . ( 1996; ). Cyanophytes from Andragulla abrigo (Murcia, SE Spain) and their environmental conditions. . Algol Stud 83:, 55–72.
    [Google Scholar]
  9. Asencio A. , Aboal M. . ( 2000; ). Algae from La Serreta cave (Murcia, SE Spain) and their environmental conditions. . Algol Stud 96:, 59–78.
    [Google Scholar]
  10. Beltrán J. A. , Asencio A. . ( 2009; ). Cyanophytes from the L’Aigua cave (Alicante, SE Spain) and their environmental conditions. . Algol Stud 132:, 21–34. [CrossRef]
    [Google Scholar]
  11. Bischoff H. W. , Bold H. C. . ( 1963; ). Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Texas:: University of Texas;.
    [Google Scholar]
  12. Bornet E. , Flahault C. . ( 1889; ). Sur quelques plantes vivant dans le test calcaire des Mollusques. . Bull Soc Bot France 36:, 147–176.[CrossRef]
    [Google Scholar]
  13. Borzi A. . ( 1917; ). Studi sulle Mixoficee. . Nuov Giorn Bot Ital 24:, 100–112.
    [Google Scholar]
  14. Bourrelly P. , Dupuy P. . ( 1973; ). Quelques stations françaises de Geitleria calcarea, Cyanophycée cavernicole. . Schweiz Z Hydrol 35:, 136–140.
    [Google Scholar]
  15. Casamatta D. A. , Vis M. L. , Sheath R. G. . ( 2003; ). Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. . Aquat Bot 77:, 295–309. [CrossRef]
    [Google Scholar]
  16. Chu H. . ( 1952; ). Some new Myxophyceae from Szechwan province China. . Ohio J Sci 21:, 96–101.
    [Google Scholar]
  17. Chu H. , Zhu W. , Li Y. . ( 1991; ). Chroococcophyceae . . In Flora Algarum Sinicarum Aquae Dulcis II, p. 161. Edited by Chu H. . . Beijing:: Science Press;.
    [Google Scholar]
  18. Claus G. . ( 1962; ). Beiträge zur kenntnis der algenflora der abaligeter höhle. . Hydrobiologia 19:, 192–222. [CrossRef]
    [Google Scholar]
  19. Claus G. . ( 1964; ). Algae and their mode of life in the Baradla Cave at Aggtelek. . Int J Speleol 1:, 13–17.[CrossRef]
    [Google Scholar]
  20. Desikachary T. V. . ( 1959; ). Cyanophyta. ICAR Monographs on Algae. New Delhi:: Indian Council of Agricultural Research;.
    [Google Scholar]
  21. Dobat K. . ( 1977; ). Zur Ökogenese und Ökologie der Lampenflora deutscher Schauhohlen . . In Beitrage zur Biologie der niederen Pflanzen, pp. 177–215. Edited by Frey W. . . Stuttgart:: Gustav Fischer Verlag;.
    [Google Scholar]
  22. Dor I. , Dor Y. . ( 1999; ). Cyanobacterial flora of the Soreq stalactite Cave (Israel) and way of its control. . Algol Stud 94:, 115–120.
    [Google Scholar]
  23. Friedmann I. . ( 1955; ). Geitleria calcarea n. gen. et n. sp. – a new atmophytic lime-incrusting blue-green alga. . Bot Not 108:, 439–445.
    [Google Scholar]
  24. Friedmann I. . ( 1964; ). Progress in the biological exploration of caves and subterranean waters in Israel. . Int J Speleol 1:, 29–33.[CrossRef]
    [Google Scholar]
  25. Geitler L. . ( 1932; ). Cyanophyceae. Leipzig:: Akademische Verlagsgesellschaft;.
    [Google Scholar]
  26. Golubić S. . ( 1967; ). Algenvegetation der Felsen, eine ökologische Algenstudie im dinarischen Karstgebeit. Stuttgart:: Schweizerbart;.
    [Google Scholar]
  27. Golubić S. , Hernández-Mariné M. , Hoffmann L. . ( 1996; ). Developmental aspects of branching in filamentous Cyanophyta/Cyanobacteria. . Algol Stud 83:, 303–329.
    [Google Scholar]
  28. Gracia-Alonso C. A. . ( 1974; ). Geitleria calcarea Friedmann nueva alga cavernicola para España. . Speleon 21:, 133–136.
    [Google Scholar]
  29. Gugger M. F. , Hoffmann L. . ( 2004; ). Polyphyly of true branching cyanobacteria (Stigonematales). . Int J Syst Evol Microbiol 54:, 349–357. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hajdu I. . ( 1966; ). Algological studies in the cave of Matyas Mount, Budapest, Hungary. . Int J Speleol 2:, 137–149.[CrossRef]
    [Google Scholar]
  31. Hernández-Mariné M. , Canals T. . ( 1994; ). Herpyzonema pulverulentum (Mastigocladaceae), a new cavernicolous atmophytic and lime-incrusted cyanophyte. . Algol Stud 75:, 123–136.
    [Google Scholar]
  32. Hernández-Mariné M. , Asencio A. , Canals A. , Ariño X. , Aboal M. , Hoffmann L. . ( 1999; ). Discovery of populations of the lime-incrusting genus Loriella (Stigonematales) in Spanish caves. . Algol Stud 94:, 121–138.
    [Google Scholar]
  33. Hernández-Mariné M. , Roldán M. , Clavero E. , Canals A. , Ariño X. . ( 2001; ). Phototrophic biofilm morphology in dim light. The case of the Puigmoltó sinkhole. . Nova Hedwigia 123:, 237–253.
    [Google Scholar]
  34. Hoffmann L. . ( 1990; ). Rediscovery of Loriella osteophila (Cyanophyceae). . Br Phycol J 25:, 391–395. [CrossRef]
    [Google Scholar]
  35. Hoffmann L. , Gugger M. , Asencio A. . ( 2003; ). Morphological and molecular characterisation of a stigonematalean cyanobacterium isolated from Spanish cave. . Algol Stud 109:, 259–265. [CrossRef]
    [Google Scholar]
  36. Hoffmann L. , Komárek J. , Kaštovský J. . ( 2005; ). System of cyanoprokaryotes (cyanobacteria)-state in 2004. . Algol Stud 117:, 95–115. [CrossRef]
    [Google Scholar]
  37. Iliopoulou-Georgoudaki J. , Pantazidou A. , Theoulakis P. . ( 1993; ). An assessment of cleaning photoautotrophic microflora: the case of Perama cave, Ioannina Greece. . Mem Biospeol 20:, 117–120.
    [Google Scholar]
  38. Kane M. D. , Poulsen L. K. , Stahl D. A. . ( 1993; ). Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. . Appl Environ Microbiol 59:, 682–686.
    [Google Scholar]
  39. Komárek J. . ( 2010a; ). Modern taxonomic revision of planktic nostocalean cyanobacteria: a short review of genera. . Hydrobiologia 639:, 231–243. [CrossRef]
    [Google Scholar]
  40. Komárek J. . ( 2010b; ). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). . Hydrobiologia 639:, 245–259. [CrossRef]
    [Google Scholar]
  41. Komárek J. , Anagnostidis K. . ( 1986; ). Modern approach to the classification system of cyanophytes. 2 – Chroococcales. . Algol Stud 74:, 157–226.
    [Google Scholar]
  42. Komárek J. , Anagnostidis K. . ( 1989; ). Modern approach to the classification system of cyanophytes. 4 – Nostocales. . Algol Stud 74:, 247–345.
    [Google Scholar]
  43. Komárek J. , Anagnostidis K. . ( 1998; ). Cyanoprocaryota, 1. Teil: Chroococcales Süsswasserflora von Mitteleuropa 19/1. Stuttgart:: G. Fischer Verlag;.
    [Google Scholar]
  44. Komárek J. , Anagnostidis K. . ( 2005; ). Cyanoprocaryota, 2. Teil: Oscillatoriales. Süsswasserflora von Mitteleuropa 19/2. Heidelberg:: Elsevier/Spectrum;.
    [Google Scholar]
  45. Korelusová J. . ( 2008; ). Phylogeny of heterocystous cyanobacteria (Nostocales and. Stigonematales) . . MSc thesis, Faculty of Science, University of South Bohemia, České Budějovice.
  46. Kumar S. , Nei M. , Dudley J. , Tamura K. . ( 2008; ). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef] [PubMed]
    [Google Scholar]
  47. Lamprinou V. , Pantazidou A. , Papadogiannaki G. , Radea C. , Economou-Amili A. . ( 2009; ). Cyanobacteria and associated invertebrates in Leontari cave. . Fottea 9:, 155–164.[CrossRef]
    [Google Scholar]
  48. Leclerc J. C. , Couté A. , Dupuy P. . ( 1983; ). Le climat annuel de deux grottes et d’une église du Poitou, où vivant des colonies pures d’algues sciaphiles. . Cryptogam Algol 4:, 1–19.
    [Google Scholar]
  49. Maidak B. L. , Cole J. R. , Lilburn T. G. , Parker C. T. Jr , Saxman P. R. , Farris R. J. , Garrity G. M. , Olsen G. J. , Schmidt T. M. , Tiedje J. M. . ( 2001; ). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29:, 173–174.[CrossRef]
    [Google Scholar]
  50. Muyzer G. , Teske A. , Wirsen C. O. , Jannasch H. W. . ( 1995; ). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. . Arch Microbiol 164:, 165–172.[CrossRef]
    [Google Scholar]
  51. Pantazidou A. . ( 1996; ). Cyanophytes (cyanobacteria) in lighted parts of various Greek caves – problems associated with their growth. . Algol Stud 83:, 455–456.
    [Google Scholar]
  52. Pantazidou A. . ( 1997; ). Cyanobacteria growths on the 5th century BC sculptures and inscription on the limestone walls of cave Nympholypton Greece.. In 7th Eurocare-Euromable Workshop ICE/HT-FORTH, pp. 153–157. Edited by Koutsoukos P. G. , Kontoyiannis C. G. . Patras, Greece:: Institute of Chemical Engineering and High Temperature Chemical Processing;.
    [Google Scholar]
  53. Pantazidou A. , Roussomoustakaki M. . ( 2005; ). Biodiversity and ecology of cyanobacteria in a variety of hypogean ecosystems (Greece). . In 14th International Congress of Speleology, pp. 624–638. Athens, Kalamos, Hellas:: Hellenic Speleological Society;.
    [Google Scholar]
  54. Porter M. L. . ( 2007; ). Subterranean biogeography: what have we learned from molecular techniques?. J Cave Karst Stud 69:, 179–186.
    [Google Scholar]
  55. Reynolds E. S. . ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef] [PubMed]
    [Google Scholar]
  56. Roldán M. , Hernández-Mariné M. . ( 2009; ). Exploring the secrets of the three-dimensional architecture of phototrophic biofilms in caves. . Int J Speleol 38:, 41–53.[CrossRef]
    [Google Scholar]
  57. Roldán M. , Clavero E. , Canals A. , Gomez-Bolea A. , Ariño X. , Hernández-Mariné M. . ( 2004; ). Distribution of phototrophic biofilms in cavities (Garraf, Spain). . Nova Hedwigia 78:, 329–351. [CrossRef]
    [Google Scholar]
  58. Sant’Anna C. , Branco L. , Silva S. . ( 1991; ). A new species of Gloeothece (Cyanophyceae, Microcystaceae) from São Paulo State, Brazil. . Algol Stud 92:, 1–5.
    [Google Scholar]
  59. Şerbãnescu V. , Decu M. . ( 1962; ). To the knowledge of cavernicolous algae of Oltenia. . Rev Biol 7:, 201–214.
    [Google Scholar]
  60. Skuja H. . ( 1970; ). Alghe cavernicole nelle zone illuminate delle grotte di Castellana (Murge di Bari). . Le Grotte d’Italia 4:, 193–202.
    [Google Scholar]
  61. Spiegelman D. , Whissell G. , Greer C. W. . ( 2005; ). A survey of the methods for the characterization of microbial consortia and communities. . Can J Microbiol 51:, 355–386. [CrossRef] [PubMed]
    [Google Scholar]
  62. Stanier R. Y. , Kunisawa R. , Mandel M. , Cohen-Bazire G. . ( 1971; ). Purification and properties of unicellular blue-green algae (order Chroococcales). . Bacteriol Rev 35:, 171–205.[PubMed]
    [Google Scholar]
  63. Vinogradova O. N. , Kovalenko O. V. , Wasser S. P. , Nevo E. , Weinstein-Evron M. . ( 1998; ). Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: microscale test in a prehistoric cave, Mount Carmel, Israel. . Isr J Plant Sci 46:, 229–238.[CrossRef]
    [Google Scholar]
  64. Wilmotte A. . ( 1994; ). Molecular evolution and taxonomy of the cyanobacteria. . In The Molecular Biology of Cyanobacteria, pp. 1–25. Edited by Bryant D. A. . . Dordrecht:: Kluwer Academic;. [CrossRef]
    [Google Scholar]
  65. Zammit G. , Kaštovský J. , Albertano P. . ( 2010; ). A first cytomorphological and molecular characterisation of a new Stigonematalean cyanobacterial morphotype isolated from Maltese catacombs. . Algol Stud 135:, 1–14.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.029223-0
Loading
/content/journal/ijsem/10.1099/ijs.0.029223-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error