1887

Abstract

An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation. Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the , and they were phenotypically different from their closest relatives and from all hitherto known filamentous bacteria described (closest relative ATCC 11426, 89.8 % sequence similarity). In pure culture, the cells (1.5–2.0 μm) in filaments are Gram-negative and contain polyphosphate and polyhydroxyalkanoates. The optimum temperature for growth is 30 °C and the strains grow in 2 % NaCl and are oxidase- and catalase-positive. Ubiquinone 10 is the major quinone. The major fatty acid (C 7) and smaller amounts of unsaturated fatty acids, 3-hydroxy fatty acids with a chain length of 16 and 18 carbon atoms and small amounts of 10-methyl-branched fatty acids with 18 carbon atoms (C 10-methyl) affiliated the strains with the / group in the . The G+C content of the DNA is 42.9 mol% (for strain Gr1). The two most dissimilar isolates by 16S rRNA gene comparison (Gr1 and Gr10; 97.7 % identical) showed 71.5 % DNA–DNA relatedness. Oligonucleotide probes specific for the pure cultures were designed for fluorescence hybridization and demonstrated that two filamentous morphotypes were present in the Grindsted wastewater treatment plant. It is proposed that the isolates represent a new genus and species, gen. nov., sp. nov. The type strain of is strain Gr1 (=DSM 15528=ATCC BAA-740).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02916-0
2006-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1865.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02916-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I. ( 1995; ). In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, pp. MMEM-3.3.6/1 – MMEM-3.3.6/15. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. London: Kluwer Academic.
  2. Blackall, L. L. ( 1991; ). Use of the Skerman micromanipulator for isolating actinomycetes in the wastewater field. Actinomycetes 2, 8–12.
    [Google Scholar]
  3. Blackall, L. L. ( 1994; ). Molecular identification of activated sludge foaming bacteria. Water Sci Technol 29, 35–42.
    [Google Scholar]
  4. Blackall, L. L., Seviour, E. M., Bradford, D., Rossetti, S., Tandoi, V. & Seviour, R. J. ( 2000; ).Candidatus Nostocoida limicola’, a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 50, 703–709.[CrossRef]
    [Google Scholar]
  5. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  6. Eikelboom, D. H. & van Buijsen, H. J. J. ( 1983; ). Microscopic Sludge Investigation Manual, 2nd edn, pp. 1–100. Delft: TNO Research Institute for Environmental Hygiene.
  7. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  8. Hugenholtz, P., Tyson, G. W. & Blackall, L. L. ( 2002; ). Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. In Gene Probes: Principles and Protocols, pp. 29–42. Edited by M. Aquino de Muro & R. Rapley. Totowa, NJ: Humana Press.
  9. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  10. Lechner, U., Baumbach, R., Becker, D., Kitunen, V., Auling, G. & Salkinoja-Salonen, M. ( 1995; ). Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. Biodegradation 6, 83–92.[CrossRef]
    [Google Scholar]
  11. Levantesi, C., Beimfohr, C., Geurkink, B., Rossetti, S., Thelen, K., Krooneman, J., Snaidr, J., van der Waarde, J. & Tandoi, V. ( 2004; ). Filamentous alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 27, 716–727.[CrossRef]
    [Google Scholar]
  12. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurements of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  13. Nielsen, P. H., Aquino de Muro, M. & Nielsen, J. L. ( 2000; ). Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ Microbiol 2, 389–398.[CrossRef]
    [Google Scholar]
  14. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  15. Reasoner, D. J. & Geldreich, E. E. ( 1985; ). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49, 1–7.
    [Google Scholar]
  16. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc.
  17. Schade, M., Beimfohr, C. & Lemmer, H. ( 2002; ). Phylogenetic and physiological characterization of a Nostocoida limicola-like organism isolated from activated sludge. Water Sci Technol 46 (1–2), 91–97.
    [Google Scholar]
  18. Snaidr, J., Beimfohr, C., Levantesi, C., Rossetti, S., van der Waarde, J., Geurkink, B., Eikelboom, D., Lemaitre, M. & Tandoi, V. ( 2002; ). Phylogenetic analysis and in situ identification of “Nostocoida limicola”-like filamentous bacteria in activated sludge from industrial wastewater treatment plants. Water Sci Technol 46 (1–2), 99–104.
    [Google Scholar]
  19. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  20. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  21. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  22. Williams, T. M. & Unz, R. F. ( 1985; ). Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains. Appl Environ Microbiol 49, 887–898.
    [Google Scholar]
  23. Yokota, A., Akagawe-Matsushita, M., Hiraishi, A., Katayama, Y., Urakami, T. & Yamasato, K. ( 1992; ). Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8, 136–171.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02916-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02916-0
Loading

Data & Media loading...

Confocal laser scanning micrographs of FISH of activated sludge from Grindsted WWTP, triple-hybridized with FLUOS-labelled EUBmix (a), Cy3-labelled Meg983 and Meg1028 (b), Cy5-labelled ALF968 (c) and an overlay of (a)–(c) (d). Bars, 10 µm.

IMAGE

Phase-contrast micrograph of filaments of strain Gr1 . Bar, 2 µm.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error