1887

Abstract

Comparison of the hypervariable region (269–279 bases in length) at the 5′ end of the 16S rDNA sequences of 29 bacterial strains that were identified previously as showed that 13 strains clustered with species, eight strains clustered with species and eight strains clustered with species. Based on DNA–DNA hybridization results, 27 strains, not including [] NCIMB 13288 and [] DSM 6472, were reidentified as , , , , , and . [] NCIMB 13288, which was located in the cluster, showed low DNA–DNA relatedness (<14 %) and low 16S rDNA sequence similarity (96·8–97·9 %) to other species. [] DSM 6472, which was located in the cluster, also showed low DNA–DNA relatedness (<12 %) and low 16S rDNA sequence similarity (95·4–98·8 %) to other species. These genotypic and phylogenetic data, plus phenotypic and chemotaxonomic characteristics, suggest that [] NCIMB 13288 (=IAM 15048) and [] DSM 6472 (=NRRL NRS-887) represent novel species of the genera and , respectively, for which the names sp. nov. and sp. nov. are proposed.

Keyword(s): HV, hypervariable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02906-0
2004-03-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540419.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02906-0&mimeType=html&fmt=ahah

References

  1. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst Appl Microbiol 15:23–31
    [Google Scholar]
  2. Arfman N., Dijkhuizen L., Kirchhof G. 8 other authors 1992; Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 42:439–445 [CrossRef]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Gordon R. E., Haynes W. C., Pang C. H. 1973; The genus Bacillus . In Agriculture Handbook (no. 427) Washington, DC: US Department of Agriculture;
    [Google Scholar]
  8. Goto K., Omura T., Hara Y., Sadaie Y. 2000; Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus . J Gen Appl Microbiol 46:1–8 [CrossRef]
    [Google Scholar]
  9. Goto K., Tanimoto Y., Tamura T., Mochida K., Arai D., Asahara M., Suzuki M., Tanaka H., Inagaki K. 2002a; Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan. Extremophiles 6:333–340 [CrossRef]
    [Google Scholar]
  10. Goto K., Mochida K., Asahara M., Suzuki M., Yokota A. 2002b; Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus . J Gen Appl Microbiol 48:243–250 [CrossRef]
    [Google Scholar]
  11. Goto K., Kato Y., Asahara M., Yokota A. 2002c; Evaluation of the hypervariable region in the 16S rDNA sequence as an index for rapid species identification in the genus Paenibacillus . J Gen Appl Microbiol 48:281–285 [CrossRef]
    [Google Scholar]
  12. Heyndrickx M., Lebbe L., Vancanneyt M. 7 other authors 1997; A polyphasic reassessment of the genus Aneurinibacillus , reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al . 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended descriptions of A. aneurinilyticus corrig., A. migulanus , and A. thermoaerophilus . Int J Syst Bacteriol 47:808–817 [CrossRef]
    [Google Scholar]
  13. Hiraishi A., Ueda Y. 1994; Intrageneric structure of the genus Rhodobacter : transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol 44:15–23 [CrossRef]
    [Google Scholar]
  14. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98 [CrossRef]
    [Google Scholar]
  15. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  16. Logan N. A., Forsyth G., Lebbe L. 8 other authors 2002; Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov. Int J Syst Evol Microbiol 52:953–966 [CrossRef]
    [Google Scholar]
  17. Meier-Stauffer K., Busse H.-J., Rainey F. A. 7 other authors 1996; Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Bacteriol 46:532–541 [CrossRef]
    [Google Scholar]
  18. Metcalfe L. D., Schmitz A. A., Pelka J. R. 1996; Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 38:514–515
    [Google Scholar]
  19. Migula W. 1900 System der Bakterien vol 2 Jena: Gustav Fisher;
    [Google Scholar]
  20. Nakamura L. K. 1991; Bacillus brevis Migula 1900 taxonomy: reassociation and base composition of DNA. Int J Syst Bacteriol 41:510–515 [CrossRef]
    [Google Scholar]
  21. Nakamura L. K. 1993; DNA relatedness of Bacillus brevis Migula 1900 strains and proposal of Bacillus agri sp.nov., nom. rev., and Bacillus centrosporus sp. nov., nom. rev. Int J Syst Bacteriol 43:20–25 [CrossRef]
    [Google Scholar]
  22. Nakamura L. K., Swezey J. 1983a; Taxonomy of Bacillus circulans Jordan 1890: base composition and reassociation of deoxyribonucleic acid. Int J Syst Bacteriol 33:46–52 [CrossRef]
    [Google Scholar]
  23. Nakamura L. K., Swezey J. 1983b; Deoxyribonucleic acid relatedness of Bacillus circulans Jordan 1890 strains. Int J Syst Bacteriol 33:703–708 [CrossRef]
    [Google Scholar]
  24. Sadaie Y., Yata K., Fujita M., Sagai H., Itaya M., Kasahara Y., Ogasawara N. 1997; Nucleotide sequence and analysis of the phoB rrnE groESL region of the Bacillus subtilis chromosome. Microbiology 143:1861–1866 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Sano H., Sakai M., Nishijima M. 1996; Application of MS to the search of the products from marine bacteria. J Mass Spectrom Soc Jpn 44:377–391 [CrossRef]
    [Google Scholar]
  27. Shida O., Takagi H., Kadowaki K., Yano H., Abe M., Udaka S., Komagata K. 1994a; Bacillus aneurinolyticus sp. nov., nom. rev.. Int J Syst Bacteriol 44143–150 [CrossRef]
    [Google Scholar]
  28. Shida O., Takagi H., Kadowaki K., Udaka S., Komagata K. 1994b; Bacillus galactophilus is a later subjective synonym of Bacillus agri . Int J Syst Bacteriol 44:172–173 [CrossRef]
    [Google Scholar]
  29. Shida O., Takagi H., Kadowaki K., Udaka S., Nakamura L. K., Komagata K. 1995; Proposal of Bacillus reuszeri sp.nov., Bacillus formosus sp. nov., nom. rev., and Bacillus borstelensis sp. nov., nom. rev. Int J Syst Bacteriol 45:93–100 [CrossRef]
    [Google Scholar]
  30. Shida O., Takagi H., Kadowaki K., Komagata K. 1996; Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Takagi H., Shida O., Kadowaki K., Komagata K., Udaka S. 1993; Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp.nov., Bacilluschoshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int J Syst Bacteriol 43:221–231 [CrossRef]
    [Google Scholar]
  33. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  35. Treisman R. 1989; Purification of plasmid DNA. In Molecular Cloning: a Laboratory Manual . , 2nd edn. pp  40–41 Edited by Sambrook J., Fritsch E. F, Maniatis T. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
/content/journal/ijsem/10.1099/ijs.0.02906-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02906-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error