1887

Abstract

A novel filamentous bacterium, designated NariEX, was isolated from soil collected from Chott Melghir salt lake, which is located in the south-east of Algeria. The strain was an aerobic, halotolerant, thermotolerant, Gram-positive bacterium that was able to grow in NaCl concentrations up to 21 % (w/v), at 37–60 °C and at pH 5.0–9.5. The major fatty acids were iso- and anteiso-C. The DNA G+C content was 47.3 mol%. The major menaquinone was MK-7, but MK-6 and MK-8 were also present. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine (methyl-PE). Results of molecular and phenotypic analysis led to the description of the strain as a new member of the family . The isolate was distinct from members of recognized genera of this family by morphological, biochemical and chemotaxonomic characteristics. Strain NariEX showed 16S rRNA gene sequence similarities of 95.38 and 94.28 % with the type strains of and , respectively, but differed from both type strains in its sugars, polar lipids and in the presence of methyl-PE. On the basis of physiological and phylogenetic data, strain NariEX represents a novel species of a new genus of the family for which the name gen. nov., sp. nov. is proposed. The type strain of , the type species of the genus, is NariEX ( = DSM 45474 = CCUG 59620).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028985-0
2012-07-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1491.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028985-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast, a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ben Dhia Thabet O. , Fardeau M.-L. , Joulian C. , Thomas P. , Hamdi M. , Garcia J.-L. , Ollivier B. . ( 2004; ). Clostridium tunisiense sp. nov., a new proteolytic, sulphur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. . Anaerobe 10:, 185–190. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cole J. R. , Wang Q. , Cardenas E. , Fish J. , Chai B. , Farris R. J. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Marsh T. . & other authors ( 2009; ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230.[PubMed] [CrossRef]
    [Google Scholar]
  6. Cowan T. . ( 1974; ). Cowan and Steel’s Manual for the Identification of’Medica1 Bacteria. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  7. Cross T. , Walker P. D. , Gould G. W. . ( 1968; ). Thermophilic actinomycetes producing resistant endospores. . Nature 220:, 352–354. [CrossRef] [PubMed]
    [Google Scholar]
  8. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  9. Embley T. M. , Wait R. . ( 1994; ). Structural lipids of Eubacteria . . In Chemical Methods in Prokaryotic Systematics, pp. 141–147. Edited by Goodfellow M. , O’Donnell A. G. . . New York:: Wiley;.
    [Google Scholar]
  10. Fardeau M.-L. , Ollivier B. , Patel B. K. C. , Magot M. , Thomas P. , Rimbault A. , Rocchiccioli F. , Garcia J.-L. . ( 1997; ). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. . Int J Syst Bacteriol 47:, 1013–1019. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  13. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  14. Gordon R. E. . ( 1966; ). Some criteria for the recognition of Nocardia madurae (Vincent) Blanchard. . J Gen Microbiol 45:, 355–364.[PubMed] [CrossRef]
    [Google Scholar]
  15. Gordon R. E. , Mihm J. M. . ( 1957; ). A comparative study of some strains received as nocardiae. . J Bacteriol 73:, 15–27.[PubMed]
    [Google Scholar]
  16. Gordon R. E. , Barnett D. A. , Handerhan J. E. , Pang C. H. N. . ( 1974; ). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  17. Groth I. , Schumann P. , Weiss N. , Martin K. , Rainey F. A. . ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef] [PubMed]
    [Google Scholar]
  18. Guérin-Faublée V. , Karray S. , Tilly B. , Richard Y. . ( 1992; ). [Actinomyces pyogenes: conventional and API system bacteriologic study of 103 strains isolated from ruminants]. . Ann Rech Vet 23:, 151–160 (in French).
    [Google Scholar]
  19. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  20. Hatayama K. , Shoun H. , Ueda Y. , Nakamura A. . ( 2005; ). Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘Thermoactinomycetaceae’ isolated from compost. . Int J Syst Evol Microbiol 55:, 2101–2104. [CrossRef] [PubMed]
    [Google Scholar]
  21. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  22. Joffin J.-N. , Leyral G. . ( 2006; ) Microbiologie Technique. Tome 1: Dictionnaire des Techniques, , 4th edn.. Bordeaux:: CRDP d’Aquitaine;.
    [Google Scholar]
  23. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  24. Lányí B. . ( 1987; ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  25. Lechevalier M. P. , De Bièvre C. , Lechevalier H. A. . ( 1977; ). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  26. Matsuo Y. , Katsuta A. , Matsuda S. , Shizuri Y. , Yokota A. , Kasai H. . ( 2006; ). Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov., antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov.. Int J Syst Evol Microbiol 56:, 2837–2842. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979; ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  29. Nonomura H. , Ohara Y. . ( 1971; ). Distribution of actinomycetes in soil. X. New genus and species of monosporic actinomycetes. . J Ferment Technol 49:, 895–903.
    [Google Scholar]
  30. Park D. J. , Dastager S. G. , Lee J. C. , Yeo S. H. , Yoon J. H. , Kim C. J. . ( 2007; ). Shimazuella kribbensis gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae . . Int J Syst Evol Microbiol 57:, 2660–2664. [CrossRef] [PubMed]
    [Google Scholar]
  31. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Schleifer K. H. , Kandler O. . ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  33. Shirling E. B. , Gottlieb D. . ( 1966; ). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  34. Stackebrandt E. , Woese C. R. . ( 1981; ). Towards a phylogeny of the actinomycetes and related organisms. . Curr Microbiol 5:, 197–202. [CrossRef]
    [Google Scholar]
  35. Staneck J. L. , Roberts G. D. . ( 1974; ). Simplified approach to the identification of aerobic Actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  36. Stead D. E. , Sellwood J. E. , Wilson J. , Viney I. . ( 1992; ). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. . J Appl Bacteriol 72:, 315–321. [CrossRef]
    [Google Scholar]
  37. Tsilinsky P. . ( 1899; ). On the thermophilic moulds. . Ann Inst Pasteur 13:, 500–505 (in French).
    [Google Scholar]
  38. Tsukamura M. . ( 1966; ). Adansonian classification of mycobacteria. . J Gen Microbiol 45:, 253–273.[PubMed] [CrossRef]
    [Google Scholar]
  39. von Jan M. , Riegger N. , Pötter G. , Schumann P. , Verbarg S. , Spröer C. , Rohde M. , Lauer B. , Labeda D. P. , Klenk H. P. . ( 2011; ). Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009. . Int J Syst Evol Microbiol 61:, 2304–2310.[PubMed] [CrossRef]
    [Google Scholar]
  40. Yassin A. F. , Hupfer H. , Klenk H.-P. , Siering C. . ( 2009; ). Desmospora activa gen. nov., sp., nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. . Int J Syst Evol Microbiol 59:, 454–459. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yoon J.-H. , Kim I.-G. , Shin Y.-K. , Park Y.-H. . ( 2005; ). Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 55:, 395–400. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028985-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028985-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error