1887

Abstract

A novel filamentous bacterium, designated NariEX, was isolated from soil collected from Chott Melghir salt lake, which is located in the south-east of Algeria. The strain was an aerobic, halotolerant, thermotolerant, Gram-positive bacterium that was able to grow in NaCl concentrations up to 21 % (w/v), at 37–60 °C and at pH 5.0–9.5. The major fatty acids were iso- and anteiso-C. The DNA G+C content was 47.3 mol%. The major menaquinone was MK-7, but MK-6 and MK-8 were also present. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine (methyl-PE). Results of molecular and phenotypic analysis led to the description of the strain as a new member of the family . The isolate was distinct from members of recognized genera of this family by morphological, biochemical and chemotaxonomic characteristics. Strain NariEX showed 16S rRNA gene sequence similarities of 95.38 and 94.28 % with the type strains of and , respectively, but differed from both type strains in its sugars, polar lipids and in the presence of methyl-PE. On the basis of physiological and phylogenetic data, strain NariEX represents a novel species of a new genus of the family for which the name gen. nov., sp. nov. is proposed. The type strain of , the type species of the genus, is NariEX ( = DSM 45474 = CCUG 59620).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028985-0
2012-07-01
2021-03-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1491.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028985-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast, a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Ben Dhia Thabet O., Fardeau M.-L., Joulian C., Thomas P., Hamdi M., Garcia J.-L., Ollivier B. 2004; Clostridium tunisiense sp. nov., a new proteolytic, sulphur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10:185–190 [CrossRef][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  4. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. other authors 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Database issueD141–D145 [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  6. Cowan T. 1974 Cowan and Steel’s Manual for the Identification of’Medica1 Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  7. Cross T., Walker P. D., Gould G. W. 1968; Thermophilic actinomycetes producing resistant endospores. Nature 220:352–354 [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  9. Embley T. M., Wait R. 1994; Structural lipids of Eubacteria . In Chemical Methods in Prokaryotic Systematics pp. 141–147 Edited by Goodfellow M., O’Donnell A. G. New York: Wiley;
    [Google Scholar]
  10. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  13. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  14. Gordon R. E. 1966; Some criteria for the recognition of Nocardia madurae (Vincent) Blanchard. J Gen Microbiol 45:355–364[PubMed] [CrossRef]
    [Google Scholar]
  15. Gordon R. E., Mihm J. M. 1957; A comparative study of some strains received as nocardiae. J Bacteriol 73:15–27[PubMed]
    [Google Scholar]
  16. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [CrossRef]
    [Google Scholar]
  17. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  18. Guérin-Faublée V., Karray S., Tilly B., Richard Y. 1992; [Actinomyces pyogenes: conventional and API system bacteriologic study of 103 strains isolated from ruminants]. Ann Rech Vet 23:151–160 (in French)
    [Google Scholar]
  19. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  20. Hatayama K., Shoun H., Ueda Y., Nakamura A. 2005; Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘Thermoactinomycetaceae’ isolated from compost. Int J Syst Evol Microbiol 55:2101–2104 [CrossRef][PubMed]
    [Google Scholar]
  21. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  22. Joffin J.-N., Leyral G. 2006 Microbiologie Technique. Tome 1: Dictionnaire des Techniques, 4th edn. Bordeaux: CRDP d’Aquitaine;
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  24. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [CrossRef]
    [Google Scholar]
  25. Lechevalier M. P., De Bièvre C., Lechevalier H. A. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260 [CrossRef]
    [Google Scholar]
  26. Matsuo Y., Katsuta A., Matsuda S., Shizuri Y., Yokota A., Kasai H. 2006; Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov., antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov.. Int J Syst Evol Microbiol 56:2837–2842 [CrossRef][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  29. Nonomura H., Ohara Y. 1971; Distribution of actinomycetes in soil. X. New genus and species of monosporic actinomycetes. J Ferment Technol 49:895–903
    [Google Scholar]
  30. Park D. J., Dastager S. G., Lee J. C., Yeo S. H., Yoon J. H., Kim C. J. 2007; Shimazuella kribbensis gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae . Int J Syst Evol Microbiol 57:2660–2664 [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  33. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  34. Stackebrandt E., Woese C. R. 1981; Towards a phylogeny of the actinomycetes and related organisms. Curr Microbiol 5:197–202 [CrossRef]
    [Google Scholar]
  35. Staneck J. L., Roberts G. D. 1974; Simplified approach to the identification of aerobic Actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  36. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  37. Tsilinsky P. 1899; On the thermophilic moulds. Ann Inst Pasteur 13:500–505 (in French)
    [Google Scholar]
  38. Tsukamura M. 1966; Adansonian classification of mycobacteria. J Gen Microbiol 45:253–273[PubMed] [CrossRef]
    [Google Scholar]
  39. von Jan M., Riegger N., Pötter G., Schumann P., Verbarg S., Spröer C., Rohde M., Lauer B., Labeda D. P., Klenk H. P. 2011; Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009. Int J Syst Evol Microbiol 61:2304–2310[PubMed] [CrossRef]
    [Google Scholar]
  40. Yassin A. F., Hupfer H., Klenk H.-P., Siering C. 2009; Desmospora activa gen. nov., sp., nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. Int J Syst Evol Microbiol 59:454–459 [CrossRef][PubMed]
    [Google Scholar]
  41. Yoon J.-H., Kim I.-G., Shin Y.-K., Park Y.-H. 2005; Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 55:395–400 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028985-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028985-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error