1887

Abstract

A Gram-staining-negative, non-motile, aerobic bacterium, designated strain A8, was isolated from the beach soil of Muchangpo, Korea. Cells were rod-shaped (0.5–0.6×0.7–1.3 µm) and colonies were colourless, circular with entire edges and had a glistening surface. The isolate grew optimally at 25–35 °C and did not require NaCl for growth. Strain A8 could not assimilate acetate, -lactate, succinate, antipyrine or chloridazon, but weakly assimilated -phenylalanine. Major fatty acids were summed feature 7 (comprising Cω7/ω9/ω12), C and summed feature 4 (comprising Cω7/ iso-C 2-OH). The major isoprenoid quinone was ubiquinone-10 and the DNA G+C content was 72.3 mol%. Comparative 16S rRNA gene sequence studies showed that strain A8 belonged to the family class and was most closely related to type strains of members of the genus (95.7–97.1 % similarity). Signature nucleotides and phylogenetic analysis of the 16S rRNA gene sequence also suggested that strain A8 was affiliated with the genus . Low DNA–DNA relatedness values (3.0±1.8–11.5±3.2 %) indicated that strain A8 represented a distinct species that was separated from other type strains in the genus . On the basis of evidence from a polyphasic study, it is proposed that strain A8 ( = KACC 15042  = LMG 25973) represents the type strain of a novel species, sp. nov. An emended description of the genus is also presented.

Funding
This study was supported by the:
  • , Korean Ministry of Education, Science and Technology
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028902-0
2012-04-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/977.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028902-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Macedo A. J., Lünsdorf H., Fischer R., Pawelczyk S., Smit J., Vancanneyt M. 2008; Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium . Int J Syst Evol Microbiol 58:1939–1949 [CrossRef][PubMed]
    [Google Scholar]
  2. Aslam Z., Im W. T., Ten L. N., Lee S. T. 2005; Phenylobacterium koreense sp. nov., isolated from South Korea. Int J Syst Evol Microbiol 55:2001–2005 [CrossRef][PubMed]
    [Google Scholar]
  3. Blaschek H. P., Klacik M. A. 1984; Role of DNase in recovery of plasmid DNA from Clostridium perfringens . Appl Environ Microbiol 48:178–181[PubMed]
    [Google Scholar]
  4. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J. 2005; phylip (phylogeny inference package), version 3.67. Distributed by the author.. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [CrossRef]
    [Google Scholar]
  10. Kanso S., Patel B. K. 2004; Phenylobacterium lituiforme sp. nov., a moderately thermophilic bacterium from a subsurface aquifer, and emended description of the genus Phenylobacterium . Int J Syst Evol Microbiol 54:2141–2146 [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  14. Lingens F., Blecher R., Blecher H., Blobel F., Eberspächer J., Fröhner C., Görisch H., Görisch H., Layh G. 1985; Phenylobacterium immobile gen. nov., sp. nov., a gram-negative bacterium that degrades the herbicide chloridazon. Int J Syst Bacteriol 35:26–39 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479:297–306 [CrossRef][PubMed]
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  17. Oh Y. S., Lim H. J., Cha I. T., Im W. T., Yoo J. S., Kang U. G., Rhee S. K., Roh D. H. 2009; Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 59:2718–2723 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  19. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  20. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  22. Tiago I., Mendes V., Pires C., Morais P. V., Veríssimo A. 2005; Phenylobacterium falsum sp. nov., an alphaproteobacterium isolated from a nonsaline alkaline groundwater, and emended description of the genus Phenylobacterium . Syst Appl Microbiol 28:295–302 [CrossRef][PubMed]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  24. Weon H. Y., Kim B. Y., Kwon S. W., Go S. J., Koo B. S., Stackebrandt E. 2008; Phenylobacterium composti sp. nov., isolated from cotton waste compost in Korea. Int J Syst Evol Microbiol 58:2301–2304 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang K., Han W., Zhang R., Xu X., Pan Q., Hu X. 2007; Phenylobacterium zucineum sp. nov., a facultative intracellular bacterium isolated from a human erythroleukemia cell line K562. Syst Appl Microbiol 30:207–212 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028902-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028902-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error