1887

Abstract

A Gram-staining-positive, strictly aerobic, non-spore-forming, rod-shaped bacterial strain, CAU 9163, was isolated from marine sediment collected in the Republic of Korea and its taxonomic position was investigated using a polyphasic approach. The novel strain grew optimally at 30 °C and pH 8.0. In phylogenetic analysis based on 16S rRNA gene sequences, strain CAU 9163 formed a hitherto unknown lineage within the order , which contains the genera , , , and . The levels of 16S rRNA gene sequence similarity between the novel strain and any established bacterial species were all <95.7 %. The major isoprenoid quinines of strain CAU 9163 were MK-8 (65.2 %) and MK-7 (22.8 %) and the predominant fatty acid was anteiso-C. The peptidoglycan was of the A4α type and based on -Lys--Asp. The major whole-cell sugars were ribose and glucose. The polar lipid profile mainly consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and an unidentified polar lipid. The genomic DNA G+C content of the novel strain was 44.3 mol%. These data were sufficient to differentiate the novel strain from established genera in the phylum . Based on the phenotypic, chemotaxonomic and genotypic evidence, strain CAU 9163 represents a novel species in a new genus for which the name gen. nov., sp. nov. is proposed. The type strain of is 9163 ( = KCTC 13729  = CCUG 59778).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028837-0
2012-08-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1914.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028837-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Yamazoe A., Fujiwara T.. ( 2007;). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.. Int J Syst Evol Microbiol 57:, 1117–1125. [CrossRef][PubMed]
    [Google Scholar]
  2. Albert R. A., Archambault J., Lempa M., Hurst B., Richardson C., Gruenloh S., Duran M., Worliczek H. L., Huber B. E.. & other authors ( 2007;). Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov.. Int J Syst Evol Microbiol 57:, 2729–2737. [CrossRef][PubMed]
    [Google Scholar]
  3. An S. Y., Haga T., Kasai H., Goto K., Yokota A.. ( 2007;). Sporosarcina saromensis sp. nov., an aerobic endospore-forming bacterium. . Int J Syst Evol Microbiol 57:, 1868–1871. [CrossRef][PubMed]
    [Google Scholar]
  4. Cho S. L., Nam S. W., Yoon J. H., Lee J. S., Sukhoom A., Kim W.. ( 2008;). Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. . Int J Syst Evol Microbiol 58:, 1844–1849. [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  6. Conn H. J., Bartholomew J. W., Jennison M. W.. ( 1957;). Staining methods. . In Manual of Microbiological Methods, pp. 10–36. Edited by Society of American Bacteriologists. New York:: McGraw-Hill;.
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  10. Fitch W. M., Margoliash E.. ( 1967;). Construction of phylogenetic trees. . Science 155:, 279–284. [CrossRef][PubMed]
    [Google Scholar]
  11. Gordon R. E., Mihm J. M.. ( 1962;). Identification of Nocardia caviae (Erikson) nov. comb. . Ann N Y Acad Sci 98:, 628–636. [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. H... New York:: Academic Press;.
    [Google Scholar]
  13. Jung Y. T., Kang S. J., Oh T. K., Yoon J. H., Kim B. H.. ( 2009;). Planomicrobium flavidum sp. nov., isolated from a marine solar saltern, and transfer of Planococcus stackebrandtii Mayilraj et al. 2005 to the genus Planomicrobium as Planomicrobium stackebrandtii comb. nov.. Int J Syst Evol Microbiol 59:, 2929–2933. [CrossRef][PubMed]
    [Google Scholar]
  14. Jung Y. T., Lee J. S., Oh K. H., Oh T. K., Yoon J. H.. ( 2011;). Roseovarius marinus sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 427–432. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim Y. O., Kim K. K., Park S., Kang S. J., Lee J. H., Lee S. J., Oh T. K., Yoon J. H.. ( 2010;). Photobacterium gaetbulicola sp. nov., a lipolytic bacterium isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 60:, 2587–2591. [CrossRef][PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  17. Kwon S. W., Kim B. Y., Song J., Weon H. Y., Schumann P., Tindall B. J., Stackebrandt E., Fritze D.. ( 2007;). Sporosarcina koreensis sp. nov. and Sporosarcina soli sp. nov., isolated from soil in Korea. . Int J Syst Evol Microbiol 57:, 1694–1698. [CrossRef][PubMed]
    [Google Scholar]
  18. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  19. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.
    [Google Scholar]
  20. MacKenzie S. L.. ( 1987;). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. . J Assoc Off Anal Chem 70:, 151–160.[PubMed]
    [Google Scholar]
  21. Marmur J., Doty P.. ( 1961;). Thermal renaturation of DNA. . J Mol Biol 3:, 585–594. [CrossRef][PubMed]
    [Google Scholar]
  22. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. . J Chromatogr A 188:, 221–233. [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  24. Nicholson W. L., Setlow P.. ( 1990;). Sporulation, germination and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R., Cutting S. M... Chichester:: Wiley;.
    [Google Scholar]
  25. Park M. H., Traiwan J., Jung M. Y., Nam Y. S., Jeong J. H., Kim W.. ( 2011;). Paenibacillus chungangensis sp. nov., isolated from a tidal-flat sediment. . Int J Syst Evol Microbiol 61:, 281–285. [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Schaeffer P., Millet J., Aubert J. P.. ( 1965;). Catabolic repression of bacterial sporulation. . Proc Natl Acad Sci U S A 54:, 704–711. [CrossRef][PubMed]
    [Google Scholar]
  28. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  29. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  33. Tominaga T., An S. Y., Oyaizu H., Yokota A.. ( 2009;). Sporosarcina luteola sp. nov. isolated from soy sauce production equipment in Japan. . J Gen Appl Microbiol 55:, 217–223. [CrossRef][PubMed]
    [Google Scholar]
  34. Traiwan J., Park M. H., Kim W.. ( 2011;). Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. . Int J Syst Evol Microbiol 61:, 670–673. [CrossRef][PubMed]
    [Google Scholar]
  35. Vaishampayan P., Miyashita M., Ohnishi A., Satomi M., Rooney A., La Duc M. T., Venkateswaran K.. ( 2009;). Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov.. Int J Syst Evol Microbiol 59:, 1094–1099. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhou Y., Xu J., Xu L., Tindall B. J.. ( 2009;). Falsibacillus pallidus to replace the homonym Bacillus pallidus Zhou et al. 2008. . Int J Syst Evol Microbiol 59:, 3176–3180. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028837-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028837-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error