1887

Abstract

A Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped and slightly halophilic bacterial strain, designated UST090418-1611, was isolated from the marine sponge collected from the Red Sea coast of Saudi Arabia. Phylogenetic trees based on the 16S rRNA gene sequence placed strain UST090418-1611 in the family with the closest relationship to the genus . The 16S rRNA gene sequence similarity between the strain and the type strains of recognized species ranged from 92.9 to 98.3 %. Although strain UST090418-1611 shared high 16S rRNA gene sequence similarity with CN46, CN74 and R65 (98.3, 97.4 and 97.3 %, respectively), the relatedness of the strain to these three strains in DNA–DNA hybridization was only 58, 56 and 33 %, respectively, supporting the novelty of the strain. In contrast to most strains in the genus , strain UST090418-1611 tolerated only 6 % (w/v) NaCl, and optimal growth occurred at 2.0 % (w/v) NaCl, pH 7.0–8.0 and 28–36 °C. The predominant cellular fatty acids were C 3-OH, C, C and summed feature 3 (Cω6 and/or Cω7). The genomic DNA G+C content was 57.1 mol%. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we suggest that the strain represents a novel species in the genus , for which the name sp. nov. is proposed, with UST090418-1611 ( = JCM 17469  = NRRL B-59512) as the type strain.

Funding
This study was supported by the:
  • KAUST (Award SA-C0040/UK-C0016)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028811-0
2012-08-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1980.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028811-0&mimeType=html&fmt=ahah

References

  1. Acar J. F. 1980; The disc susceptibility test. In Antibiotics in Laboratory and Medicine pp. 24–54 Edited by Lorian V. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Aguilera M., Jiménez-Pranteda M. L., Kharroub K., González-Paredes A., Durban J. J., Russell N. J., Ramos-Cormenzana A., Monteoliva-Sánchez M. 2009; Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain. Int J Syst Evol Microbiol 59:1691–1695 [View Article][PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  4. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  5. Cano R. J., Torres M. J., Klem R. E., Palomares J. C. 1992; DNA hybridization assay using ATTOPHOS, a fluorescent substrate for alkaline phosphatase. Biotechniques 12:264–269[PubMed]
    [Google Scholar]
  6. Chen Y. G., Cui X. L., Pukall R., Li H. M., Yang Y. L., Xu L. H., Wen M. L., Peng Q., Jiang C. L. 2007; Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332 [View Article][PubMed]
    [Google Scholar]
  7. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [View Article]
    [Google Scholar]
  8. Collins C. H., Lyne P. M., Grange J. M. 1989 Collins and Lyne’s Microbiological Methods London & Boston: Butterworth;
    [Google Scholar]
  9. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [View Article][PubMed]
    [Google Scholar]
  10. Denhardt D. T. 1966; A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Felsenstein J. 1997; An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46:101–111 [View Article][PubMed]
    [Google Scholar]
  13. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J. C. 1992; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [View Article][PubMed]
    [Google Scholar]
  14. Handley K. M., Héry M., Lloyd J. R. 2009; Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 59:886–892 [View Article][PubMed]
    [Google Scholar]
  15. Huo Y. Y., Wang C. S., Yang J. Y., Wu M., Xu X. W. 2008; Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 58:2885–2889 [View Article][PubMed]
    [Google Scholar]
  16. Kaeppel E. C., Gärdes A., Seebah S., Grossart H. P., Ullrich M. S. 2012; Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii . Int J Syst Evol Microbiol 62:124–128 [View Article][PubMed]
    [Google Scholar]
  17. Kharroub K., Aguilera M., Jiménez-Pranteda M. L., González-Paredes A., Ramos-Cormenzana A., Monteoliva-Sánchez M. 2011; Marinobacter oulmenensis sp. nov., a moderately halophilic bacterium isolated from brine of a salt concentrator. Int J Syst Evol Microbiol 61:2210–2214 [View Article][PubMed]
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  19. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  20. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  21. Lafi F. F., Garson M. J., Fuerst J. A. 2005; Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50:213–220 [View Article][PubMed]
    [Google Scholar]
  22. Lau K. W., Ng C. Y., Ren J., Lau S. C., Qian P. Y., Wong P. K., Lau T. C., Wu M. 2005; Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’. Int J Syst Evol Microbiol 55:1051–1057 [View Article][PubMed]
    [Google Scholar]
  23. Lee O. O., Wang Y., Yang J., Lafi F. F., Al-Suwailem A., Qian P. Y. 2011; Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664 [View Article][PubMed]
    [Google Scholar]
  24. MacDonell M. T., Singleton F. L., Hood M. A. 1982; Diluent composition for use of API 20E in characterizing marine and estuarine bacteria. Appl Environ Microbiol 44:423–427[PubMed]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  26. Nedashkovskaya O. I., Kim S. B., Han S. K., Lysenko A. M., Rohde M., Zhukova N. V., Falsen E., Frolova G. M., Mikhailov V. V., Bae K. S. 2003; Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm.. Int J Syst Evol Microbiol 53:1967–1971 [View Article][PubMed]
    [Google Scholar]
  27. Qu L., Zhu F., Zhang J., Gao C., Sun X. 2011; Marinobacter daqiaonensis sp. nov., a moderate halophile isolated from a Yellow Sea salt pond. Int J Syst Evol Microbiol 61:3003–3008 [View Article][PubMed]
    [Google Scholar]
  28. Romanenko L. A., Schumann P., Rohde M., Zhukova N. V., Mikhailov V. V., Stackebrandt E. 2005; Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143–148 [View Article][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  30. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  31. Shrout J. D., Scheetz T. E., Casavant T. L., Parkin G. F. 2005; Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria. Appl Microbiol Biotechnol 67:261–268 [View Article][PubMed]
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  34. Taylor M. W., Radax R., Steger D., Wagner M. 2007; Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347 [View Article][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  36. Tindall B. J. 1996; Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual, section 4.1.5 Edited by Akkermans A., de Bruijn F., van Elsas D. Dordrecht: Kluwer;
    [Google Scholar]
  37. Wang C. Y., Ng C. C., Tzeng W. S., Shyu Y. T. 2009; Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 59:2605–2609 [View Article][PubMed]
    [Google Scholar]
  38. Xu X. W., Wu Y. H., Wang C. S., Yang J. Y., Oren A., Wu M. 2008; Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58:637–640 [View Article][PubMed]
    [Google Scholar]
  39. Zhang D. C., Li H. R., Xin Y. H., Chi Z. M., Zhou P. J., Yu Y. 2008; Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466 [View Article][PubMed]
    [Google Scholar]
  40. ZoBell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028811-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028811-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error