1887

Abstract

A Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped and slightly halophilic bacterial strain, designated UST090418-1611, was isolated from the marine sponge collected from the Red Sea coast of Saudi Arabia. Phylogenetic trees based on the 16S rRNA gene sequence placed strain UST090418-1611 in the family with the closest relationship to the genus . The 16S rRNA gene sequence similarity between the strain and the type strains of recognized species ranged from 92.9 to 98.3 %. Although strain UST090418-1611 shared high 16S rRNA gene sequence similarity with CN46, CN74 and R65 (98.3, 97.4 and 97.3 %, respectively), the relatedness of the strain to these three strains in DNA–DNA hybridization was only 58, 56 and 33 %, respectively, supporting the novelty of the strain. In contrast to most strains in the genus , strain UST090418-1611 tolerated only 6 % (w/v) NaCl, and optimal growth occurred at 2.0 % (w/v) NaCl, pH 7.0–8.0 and 28–36 °C. The predominant cellular fatty acids were C 3-OH, C, C and summed feature 3 (Cω6 and/or Cω7). The genomic DNA G+C content was 57.1 mol%. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we suggest that the strain represents a novel species in the genus , for which the name sp. nov. is proposed, with UST090418-1611 ( = JCM 17469  = NRRL B-59512) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028811-0
2012-08-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1980.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028811-0&mimeType=html&fmt=ahah

References

  1. Acar J. F.. ( 1980;). The disc susceptibility test. . In Antibiotics in Laboratory and Medicine, pp. 24–54. Edited by Lorian V... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  2. Aguilera M., Jiménez-Pranteda M. L., Kharroub K., González-Paredes A., Durban J. J., Russell N. J., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2009;). Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain. . Int J Syst Evol Microbiol 59:, 1691–1695. [CrossRef][PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  5. Cano R. J., Torres M. J., Klem R. E., Palomares J. C.. ( 1992;). DNA hybridization assay using ATTOPHOS, a fluorescent substrate for alkaline phosphatase. . Biotechniques 12:, 264–269.[PubMed]
    [Google Scholar]
  6. Chen Y. G., Cui X. L., Pukall R., Li H. M., Yang Y. L., Xu L. H., Wen M. L., Peng Q., Jiang C. L.. ( 2007;). Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. . Int J Syst Evol Microbiol 57:, 2327–2332. [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  8. Collins C. H., Lyne P. M., Grange J. M.. ( 1989;). Collins and Lyne’s Microbiological Methods. London & Boston:: Butterworth;.
    [Google Scholar]
  9. De Ley J., Tijtgat R.. ( 1970;). Evaluation of membrane filter methods for DNA-DNA hybridization. . Antonie van Leeuwenhoek 36:, 461–474. [CrossRef][PubMed]
    [Google Scholar]
  10. Denhardt D. T.. ( 1966;). A membrane-filter technique for the detection of complementary DNA. . Biochem Biophys Res Commun 23:, 641–646. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Felsenstein J.. ( 1997;). An alternating least squares approach to inferring phylogenies from pairwise distances. . Syst Biol 46:, 101–111. [CrossRef][PubMed]
    [Google Scholar]
  13. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J. C.. ( 1992;). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. . Int J Syst Bacteriol 42:, 568–576. [CrossRef][PubMed]
    [Google Scholar]
  14. Handley K. M., Héry M., Lloyd J. R.. ( 2009;). Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. . Int J Syst Evol Microbiol 59:, 886–892. [CrossRef][PubMed]
    [Google Scholar]
  15. Huo Y. Y., Wang C. S., Yang J. Y., Wu M., Xu X. W.. ( 2008;). Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. . Int J Syst Evol Microbiol 58:, 2885–2889. [CrossRef][PubMed]
    [Google Scholar]
  16. Kaeppel E. C., Gärdes A., Seebah S., Grossart H. P., Ullrich M. S.. ( 2012;). Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. . Int J Syst Evol Microbiol 62:, 124–128. [CrossRef][PubMed]
    [Google Scholar]
  17. Kharroub K., Aguilera M., Jiménez-Pranteda M. L., González-Paredes A., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2011;). Marinobacter oulmenensis sp. nov., a moderately halophilic bacterium isolated from brine of a salt concentrator. . Int J Syst Evol Microbiol 61:, 2210–2214. [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  19. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  20. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  21. Lafi F. F., Garson M. J., Fuerst J. A.. ( 2005;). Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. . Microb Ecol 50:, 213–220. [CrossRef][PubMed]
    [Google Scholar]
  22. Lau K. W., Ng C. Y., Ren J., Lau S. C., Qian P. Y., Wong P. K., Lau T. C., Wu M.. ( 2005;). Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’. . Int J Syst Evol Microbiol 55:, 1051–1057. [CrossRef][PubMed]
    [Google Scholar]
  23. Lee O. O., Wang Y., Yang J., Lafi F. F., Al-Suwailem A., Qian P. Y.. ( 2011;). Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. . ISME J 5:, 650–664. [CrossRef][PubMed]
    [Google Scholar]
  24. MacDonell M. T., Singleton F. L., Hood M. A.. ( 1982;). Diluent composition for use of API 20E in characterizing marine and estuarine bacteria. . Appl Environ Microbiol 44:, 423–427.[PubMed]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  26. Nedashkovskaya O. I., Kim S. B., Han S. K., Lysenko A. M., Rohde M., Zhukova N. V., Falsen E., Frolova G. M., Mikhailov V. V., Bae K. S.. ( 2003;). Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm.. Int J Syst Evol Microbiol 53:, 1967–1971. [CrossRef][PubMed]
    [Google Scholar]
  27. Qu L., Zhu F., Zhang J., Gao C., Sun X.. ( 2011;). Marinobacter daqiaonensis sp. nov., a moderate halophile isolated from a Yellow Sea salt pond. . Int J Syst Evol Microbiol 61:, 3003–3008. [CrossRef][PubMed]
    [Google Scholar]
  28. Romanenko L. A., Schumann P., Rohde M., Zhukova N. V., Mikhailov V. V., Stackebrandt E.. ( 2005;). Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. . Int J Syst Evol Microbiol 55:, 143–148. [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  31. Shrout J. D., Scheetz T. E., Casavant T. L., Parkin G. F.. ( 2005;). Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria. . Appl Microbiol Biotechnol 67:, 261–268. [CrossRef][PubMed]
    [Google Scholar]
  32. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  34. Taylor M. W., Radax R., Steger D., Wagner M.. ( 2007;). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. . Microbiol Mol Biol Rev 71:, 295–347. [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  36. Tindall B. J.. ( 1996;). Respiratory lipoquinones as biomarkers. . In Molecular Microbial Ecology Manual, section 4.1.5. Edited by Akkermans A., de Bruijn F., van Elsas D.. Dordrecht:: Kluwer;.
  37. Wang C. Y., Ng C. C., Tzeng W. S., Shyu Y. T.. ( 2009;). Marinobacter szutsaonensis sp. nov., isolated from a solar saltern. . Int J Syst Evol Microbiol 59:, 2605–2609. [CrossRef][PubMed]
    [Google Scholar]
  38. Xu X. W., Wu Y. H., Wang C. S., Yang J. Y., Oren A., Wu M.. ( 2008;). Marinobacter pelagius sp. nov., a moderately halophilic bacterium. . Int J Syst Evol Microbiol 58:, 637–640. [CrossRef][PubMed]
    [Google Scholar]
  39. Zhang D. C., Li H. R., Xin Y. H., Chi Z. M., Zhou P. J., Yu Y.. ( 2008;). Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. . Int J Syst Evol Microbiol 58:, 1463–1466. [CrossRef][PubMed]
    [Google Scholar]
  40. ZoBell C. E.. ( 1941;). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. . J Mar Res 4:, 42–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.028811-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028811-0
Loading

Data & Media loading...

Supplements

Supplementary Figs S1-S3 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error