1887

Abstract

In an ecological survey of nitrogen-fixing bacteria isolated from the rhizosphere and as endophytes of sugarcane, maize and teosinte plants in Brazil, Mexico and South Africa, a new phylogenetically homogeneous group of N-fixing bacteria was identified within the genus . This polyphasic taxonomic study included microscopic and colony morphology, API 20NE tests and growth on different culture media at different pH and temperatures, as well as carbon source assimilation tests and whole-cell protein pattern analysis. Analysis of 16S rRNA gene sequences showed 99·2–99·9 % similarity within the novel species and 97·2 % similarity to the closest related species, . The novel species was composed of four distinct amplified 16S rDNA restriction analysis groups. The DNA–DNA reassociation values within the novel species were greater than 70 % and less than 42 % for the closest related species, . Based on these results and on many phenotypic characteristics, a novel N-fixing species is proposed for the genus , sp. nov., with the type strain Ppe8 (=ATCC BAA-831=LMG 22274=DSM 15359). was isolated from plants grown in geographical regions with climates ranging from temperate subhumid to hot humid.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02879-0
2004-11-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542155.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02879-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., More, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Microbiology. New York: Wiley.
  2. Brämer, C. O., Vandamme, P., da Silva, L. F., Gomez, J. G. C. & Steinbüchel, A. ( 2001; ). Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51, 1709–1713.[CrossRef]
    [Google Scholar]
  3. Burbage, D. A. & Sasser, M. ( 1982; ). A medium selective for Pseudomonas cepacia. Phytopathology 76, 706.
    [Google Scholar]
  4. Burris, R. H. ( 1972; ). Nitrogen fixation assay – methods and techniques. Methods Enzymol 24B, 415–431.
    [Google Scholar]
  5. Coenye, T. & Vandamme, P. ( 2003; ). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5, 719–729.[CrossRef]
    [Google Scholar]
  6. Cruz, L. M., Maltempi-de Souza, E., Weber, O. B., Baldani, J. I., Döbereiner, J. & Pedrosa, O. ( 2001; ). 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl Environ Microbiol 67, 2375–2379.[CrossRef]
    [Google Scholar]
  7. Czàky, T. Z. ( 1948; ). On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2, 450–454.[CrossRef]
    [Google Scholar]
  8. Estrada-de los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. ( 2001; ). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67, 2790–2798.[CrossRef]
    [Google Scholar]
  9. Estrada, P., Mavingui, P., Cournoyer, B., Fontaine, F., Balandreau, J. & Caballero-Mellado, J. ( 2002; ). A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 48, 285–294.[CrossRef]
    [Google Scholar]
  10. Gillis, M., Trân Van, V., Bardin, R. & 7 other authors ( 1995; ). Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45, 274–289.[CrossRef]
    [Google Scholar]
  11. Hartmann, A., Baldani, J. I., Kirchhof, G., Assmus, B., Hutzler, P., Springer, N., Ludwig, G. W., Baldani, V. L. & Döbereiner, J. ( 1995; ). Taxonomic and ecological studies of diazotrophic rhizosphere bacteria using phylogenetic probes. In Azospirillum VI and Related Microorganisms: Genetics, Physiology and Ecology, pp. 416–427. Edited by I. Fendrick, M. del Gallo, J. Vanderleyden & M. Zamaroczy. Berlin: Springer.
  12. Henry, D. A., Campbell, M. E., LiPuma, J. J. & Speert, D. P. ( 1997; ). Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 35, 614–619.
    [Google Scholar]
  13. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  14. Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.-H., Pommerening-Röser, A., Koops, H. P. & Wagner, M. ( 1998; ). Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64, 3042–3051.
    [Google Scholar]
  15. Kirchhof, G., Schloter, M. Aßmus B. & Hartmann, A. ( 1997; ). Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol Biochem 29, 853–862.[CrossRef]
    [Google Scholar]
  16. Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. ( 2000; ). rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66, 1328–1333.[CrossRef]
    [Google Scholar]
  17. Kumar, S., Tamura, K. & Nei, M. ( 1993; ). mega: molecular evolutionary genetics analysis, version 1.0. University Park, PA: The Pennsylvania State University.
  18. Liesack, W., Janssen, P. H., Rainey, F. A., Ward-Rainey, N. L. & Stackebrandt, E. ( 1997; ). Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. In Modern Soil Microbiology, pp. 375–439. Edited by J. D. Van Elsas, J. T. Trevors & E. M. H. Wellington. New York: Marcel Dekker.
  19. Minerdi, D., Fani, R., Gallo, R., Boarino, A. & Bonfante, P. ( 2001; ). Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67, 725–732.[CrossRef]
    [Google Scholar]
  20. Moulin, L., Munive, A., Dreyfus, B. & Boivin-Masson, C. ( 2001; ). Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411, 948–950.[CrossRef]
    [Google Scholar]
  21. Nogales, B., Moore, E. R. B., Llobet-Brossa, E., Rossello-Mora, R., Amman, R. & Timmis, K. N. ( 2001; ). Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67, 1874–1884.[CrossRef]
    [Google Scholar]
  22. Pallud, C., Viallard, V., Balandreau, J., Normand, P. & Grundmann, G. ( 2001; ). Combined use of a specific probe and PCAT medium to study Burkholderia in soil. J Microbiol Methods 47, 25–34.[CrossRef]
    [Google Scholar]
  23. Reis, V. M., Olivares, F. L. & Döbereiner, J. ( 1994; ). Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10, 101–104.
    [Google Scholar]
  24. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  25. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  26. Smibert, R. M. & Krieg, N. R. ( 1981; ). General characterization. In Manual of Methods for General Bacteriology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costillo, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  27. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  28. Suwa, Y., Wright, A. D., Fukimori, F., Nummy, K. A., Hausinger, R. P., Holben, W. E. & Forney, L. J. ( 1996; ). Characterization of a chromosomally encoded 2,4-dichlorophenoxiacetic acid/α-ketoglutarate dioxygenase from Burkholderia sp. strain RASC. Appl Environ Microbiol 62, 2464–2469.
    [Google Scholar]
  29. Trân Van, V., Mavingui, P., Berge, O., Balandreau, J. & Heulin, T. ( 1994; ). Promotion de croissance du riz inoculé par une bactérie fixatrice d'azote, Burkholderia vietnamiensis, isolée d'un sol sulfaté acide du Viêt-nam. Agronomie 14, 697–707 (in French).[CrossRef]
    [Google Scholar]
  30. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J. ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60, 407–438.
    [Google Scholar]
  31. Vandamme, P., Holmes, B., Vancanneyt, M. & 8 other authors ( 1997; ). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47, 1188–1200.[CrossRef]
    [Google Scholar]
  32. Vandamme, P., Goris, J., Chen, W.-M., de Vos, P. & Willems, A. ( 2002; ). Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25, 507–512.[CrossRef]
    [Google Scholar]
  33. Weber, O. B., Baldani, V. L. D., Teixeira, K. R. S., Kirchhof, G., Baldani, J. I. & Döbereiner, J. ( 1999; ). Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210, 103–113.[CrossRef]
    [Google Scholar]
  34. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  35. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T. & Arakawa, M. ( 1992; ). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36, 1251–1275.[CrossRef]
    [Google Scholar]
  36. Zhang, H., Hanada, S., Shigematsu, T., Shibuya, K., Kamagata, Y., Kanagawa, T. & Kurane, R. ( 2000; ). Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50, 743–749.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02879-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02879-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2155 - 2162

ARDRA profiles of strains. Lanes: 1 and 6, 100 base pair molecular marker (Gibco BRL). Lanes 2 to 5, 16S rRNA amplified gene digested with I; lane 2, strain MOc-725; lane 3, strain MTo-672; lane 4, strain MTo-293; lane 5, strain Ppe8 . Lanes 7 to 10, 16S rRNA amplified gene digested with fI; lane 7, strain MOc-725; lane 8, strain MTo-672 (genotype 17); lane 9, strain MTo-293; lane 10, strain Ppe8 .

Extended phylogenetic tree based on 16S rRNA gene sequences showing the relatedness among sp. nov., species and related beta- . The bar represents 1 nucleotide substitution per 100 nucleotides. Bootstrap probabilities are indicated at branch points. The GenBank accession number for each strain is shown in parentheses.

[Single PDF file](518 KB)

BIOLOG carbon source utilization tests by sp. nov.

According to the BIOLOG carbon source utilization (oxidation) tests, all strains were able to oxidize Tween 40, Tween 80, -acetyl-D-glucosamine, adonitol, L-arabinose, D-arabitol, cellobiose, D-fructose, L-fucose, D-galactose, alpha-D-glucose, D-mannitol, mannose, L-rhamnose, methyl pyruvate, monomethyl succinate, -aconitic acid, citric acid, D-gluconic acid, beta-hydroxybutyric acid, -hydroxyphenylacetic acid, DL-lactic acid, propionic acid, quinic acid, sebacic acid, succinic acid, bromosuccinic acid, L-alanylglycine, L-asparagine, L-aspartic acid, L-glutamic acid, hydroxy-L-proline, L-phenylalanine, L-proline, gamma-aminobutyric acid and 2-aminoethanol. The strains were unable to oxidize alpha-cyclodextrin, dextrin, glycogen, -acetyl-D-galactosamine, erythritol, alpha-D-lactose, maltose, melibiose, methyl beta-D-glucoside, D-raffinose, sucrose, turanose, xylitol, D-galactonic acid lactone, D-glucuronic acid, gamma-hydroxybutyric acid, alpha-ketovaleric acid, malonic acid, glucoronamide, glycyl-L-aspartic acid, D-serine, urocanic acid, uridine, phenylethylamine and glucose 1-phosphate. Variable results were obtained for the oxidation of D-sorbitol, formic acid, D-galacturonic acid, D-saccharic acid, L-serine, alaninamide, L-pyroglutamic acid, inosine, -inositol, acetic acid, D-glucosaminic acid, alpha-hydroxybutyric acid, DL-alanine, L-histidine, gentiobiose, lactulose, D-psicose, itaconic acid, L-ornithine, DL-carnitine, putrescine, alpha-ketobutyric acid, alpha-ketoglutaric acid, succinamic acid, L-threonine, glucose 6-phosphate, D-trehalose, glycyl-L-glutamic acid, 2,3-butanediol, glycerol, glycerol phosphate and L-leucine.



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error