1887

Abstract

A rod-shaped, endospore-forming, Gram-reaction-positive bacterium, designated strain WPCB018, was isolated from a fresh water sample collected from Woopo wetland, Korea. The isolate was identified as a member of the genus on the basis of phenotypic characteristics and phylogenetic inference based on 16S rRNA gene sequence analysis. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and unknown aminophospholipids. The diamino acid found in the cell-wall peptidoglycan was diaminopimelic acid. The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C (32.2 %), C (20.1 %) and C (18.1 %). The DNA G+C content was 56.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain WPCB018 belongs to a cluster comprising species of the genus , its closest neighbours being PC-147 (97.5 %) and SAFN-007 (96.2 %). Genomic DNA–DNA hybridizations performed with strain WPCB018 and type strains of the species , , , and showed relatedness values of only 10, 17, 18, 19 and 20 %, respectively. On the basis of phenotypic, molecular and genetic evidence, strain WPCB018 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of the novel species is WPCB018 ( = KCTC 13280  = JCM 16350).

Funding
This study was supported by the:
  • Ministry of Education, Science and Technology (Award 2010-0006861)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.028308-0
2011-11-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2763.html?itemId=/content/journal/ijsem/10.1099/ijs.0.028308-0&mimeType=html&fmt=ahah

References

  1. Alexander B., Priest F. G. 1989; Bacillus glucanolyticus, a new species that degrades a variety of β-glucans. Int J Syst Bacteriol 39:112–115 [View Article]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260 [View Article][PubMed]
    [Google Scholar]
  3. Baik K. S., Park S. C., Kim E. M., Bae K. S., Ahn J. H., Ka J. O., Chun J., Seong C. N. 2008; Diversity of bacterial community in freshwater of Woopo wetland. J Microbiol 46:647–655 [View Article][PubMed]
    [Google Scholar]
  4. Breznak J., Costilow R. N. 2007; Physicochemical factors in growth. In Methods for General and Molecular Microbiology pp. 309–329 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Chun J. 1995; Computer-assisted classification and identification of actinomycetes . PhD thesis, University of Newcastle
    [Google Scholar]
  6. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [View Article][PubMed]
    [Google Scholar]
  7. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  8. Chung Y. R., Kim C. H., Hwang I., Chun J. 2000; Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500 [View Article][PubMed]
    [Google Scholar]
  9. CLSI 2009; Performance standards for antimicrobial susceptibility testing, Nineteenth Informational Supplement. CLSI document M100–S19 (ISBN 1–56238–690–5). Wayne, PA: Clinical and Laboratory Standards Institute;
  10. Dahllöf I., Baillie H., Kjelleberg S. 2000; rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376–3380 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA
  13. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  14. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [View Article][PubMed]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Kanzawa Y., Harada A., Takeuchi M., Yokota A., Harada T. 1995; Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. Int J Syst Bacteriol 45:515–521 [View Article][PubMed]
    [Google Scholar]
  17. Kim B.-C., Lee K. H., Kim M. N., Kim E.-M., Rhee M.-S., Kwon O.-Y., Shin K.-S. 2009; Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora . J Microbiol 47:530–535 [View Article][PubMed]
    [Google Scholar]
  18. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  19. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20) pp. 173–199 Edited by Goodfellow M., Minnikin D. E. New York: Academic Press;
    [Google Scholar]
  20. Lee J.-S., Lee K. C., Pyun Y.-R., Bae K. S. 2003; Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol 53:1277–1280 [View Article][PubMed]
    [Google Scholar]
  21. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr, Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338[PubMed]
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  23. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athayle M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  24. Montefusco A., Nakamura L. K., Labeda D. P. 1993; Bacillus peoriae sp. nov.. Int J Syst Bacteriol 43:388–390 [View Article]
    [Google Scholar]
  25. Nakamura L. K. 1984; Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev.. Int J Syst Bacteriol 34:224–226 [View Article]
    [Google Scholar]
  26. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Seldin L., van Elsas J. D., Penido E. G. C. 1984; Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol 34:451–456 [View Article]
    [Google Scholar]
  29. Seo W.-T., Kahng G.-G., Nam S.-H., Choi S.-D., Suh H.-H., Kim S.-W., Park Y.-H. 1999; Isolation and characterization of a novel exopolysaccharide-producing Paenibacillus sp. WN9 KCTC 8951P. J Microbiol Biotechnol 9:820–825
    [Google Scholar]
  30. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov.. Int J Syst Bacteriol 47:299–306 [View Article][PubMed]
    [Google Scholar]
  31. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Staley J. T. 1968; Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942[PubMed]
    [Google Scholar]
  34. Swofford D. L. 1998; Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates;
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  36. Vaz-Moreira I., Faria C., Nobre M. F., Schumann P., Nunes O. C., Manaia C. M. 2007; Paenibacillus humicus sp. nov., isolated from poultry litter compost. Int J Syst Evol Microbiol 57:2267–2271 [View Article][PubMed]
    [Google Scholar]
  37. Wang M., Yang M., Zhou G., Luo X., Zhang L., Tang Y., Fang C. 2008; Paenibacillus tarimensis sp. nov., isolated from sand in Xinjiang, China. Int J Syst Evol Microbiol 58:2081–2085 [View Article][PubMed]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  39. Yamaguchi S., Yokoe M. 2000; A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66:3337–3343 [CrossRef]
    [Google Scholar]
  40. Yoon J.-H., Yim D. K., Lee J.-S., Shin K.-S., Sato H. H., Lee S. T., Park Y. K., Park Y.-H. 1998; Paenibacillus campinasensis sp. nov., a cyclodextrin-producing bacterium isolated in Brazil. Int J Syst Bacteriol 48:833–837 [View Article][PubMed]
    [Google Scholar]
  41. Yumoto I., Hirota K., Yamaga S., Nodasaka Y., Kawasaki T., Matsuyama H., Nakajima K. 2004; Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 54:1997–2001 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.028308-0
Loading
/content/journal/ijsem/10.1099/ijs.0.028308-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error