1887

Abstract

Characterization of strains of pv. citri by using DNA fingerprints that were generated from primers for enterobacterial repetitive intergenic consensus (ERIC) elements led to the discovery of differential sequences for a leucine-responsive regulatory protein () gene in two subgroups of strains with different host ranges on spp. DNA hybridization and PCR-based assays that used different sets of primers were designed to detect the core sequence, as well as to obtain the entire sequence of the gene for several species and pathovars. Higher variability was observed at the nucleotide level than at the amino acid level among the different species and pathovars, revealing selection pressure on the gene, which is presumably due to an essential role of the gene in bacterial metabolism. Moderate variability in the 3′ and 5′ domains was used to study relationships among different species within the genus . Species of this genus that were isolated from citrus, as well as other pathovars of , showed highly similar gene sequences, whereas other species, especially , had sequences that were more dissimilar to that of . Thus, the gene sequence is useful to distinguish pv. citri groups and promising for polyphasic taxonomic analysis of the genus . Data from analysis of gene sequences support the current concepts for classification of xanthomonads, which are based on other approaches.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02784-0
2004-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540429.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02784-0&mimeType=html&fmt=ahah

References

  1. Bouzar, H., Jones, J. B., Stall, R. E., Louws, F. J., Schneider, M., Rademaker, J. L. W., de Bruijn, F. J. & Jackson, L. E. ( 1999; ). Multiphasic analysis of xanthomonads causing bacterial spot disease on tomato and pepper in the Caribbean and Central America: evidence for common lineages within and between countries. Phytopathology 89, 328–335.[CrossRef]
    [Google Scholar]
  2. Calvo, J. M. & Matthews, R. G. ( 1994; ). The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58, 466–490.
    [Google Scholar]
  3. Chen, S. & Calvo, J. M. ( 2002; ). Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. J Mol Biol 318, 1031–1042.[CrossRef]
    [Google Scholar]
  4. Cubero, J. & Graham, J. H. ( 2002; ). Genetic relationships among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl Environ Microbiol 68, 1257–1264.[CrossRef]
    [Google Scholar]
  5. da Silva, A. C. R., Ferro, J. A., Reinach, F. C. & 62 other authors ( 2002; ). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463.[CrossRef]
    [Google Scholar]
  6. Dye, D. W. & Lelliott, R. A. ( 1974; ). Genus II. Xanthomonas. In Bergey's Manual of Determinative Bacteriology, 8th edn, pp. 243–249. Edited by R. E. Buchanan & N. E. Gibbons. Baltimore: Williams & Wilkins.
  7. Egel, D. S., Graham, J. H. & Stall, R. E. ( 1991; ). Genomic relatedness of Xanthomonas campestris strains causing diseases of citrus. Appl Environ Microbiol 57, 2724–2730.
    [Google Scholar]
  8. Friedberg, D., Platko, J. V., Tyler, B. & Calvo, J. M. ( 1995; ). The amino acid sequence of Lrp is highly conserved in four enteric microorganisms. J Bacteriol 177, 1624–1626.
    [Google Scholar]
  9. Gabriel, D. W., Kingsley, M. T., Hunter, J. E. & Gottwald, T. ( 1989; ). Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to species and reclassification of all X. campestris pv. citri strains. Int J Syst Bacteriol 39, 14–22.[CrossRef]
    [Google Scholar]
  10. Gonçalves, E. R. & Rosato, Y. B. ( 2002; ). Phylogenetic analysis of Xanthomonas species upon 16S–23S rDNA intergenic spacer sequences. Int J Syst Bacteriol 52, 355–361.
    [Google Scholar]
  11. Graham, J. H. & Gottwald, T. R. ( 1990; ). Variation in aggressiveness of Xanthomonas campestris pv. citrumelo associated with citrus bacterial spot in Florida citrus nurseries. Phytopathology 80, 190–196.[CrossRef]
    [Google Scholar]
  12. Graham, J. H., Hartung, J. S., Stall, R. E. & Chase, A. R. ( 1990; ). Pathological, restriction-fragment length polymorphism, and fatty acid profile relationships between Xanthomonas campestris from citrus and noncitrus hosts. Phytopathology 80, 829–836.[CrossRef]
    [Google Scholar]
  13. Graham, J. H., Gottwald, T. R., Riley, T. D. & Bruce, M. A. ( 1992; ). Susceptibility of citrus fruit to bacterial spot and citrus canker. Phytopathology 82, 452–457.[CrossRef]
    [Google Scholar]
  14. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  15. Hauben, L., Vauterin, L., Swings, J. & Moore, E. R. B. ( 1997; ). Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Syst Bacteriol 47, 328–335.[CrossRef]
    [Google Scholar]
  16. Higgins, D. G. & Sharp, P. M. ( 1988; ). clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–244.[CrossRef]
    [Google Scholar]
  17. Hulton, C. S. J., Higgins, C. F. & Sharp, P. M. ( 1991; ). ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5, 825–834.[CrossRef]
    [Google Scholar]
  18. Jones, J. B., Stall, R. E. & Bouzar, H. ( 1998; ). Diversity among xanthomonads pathogenic on pepper and tomato. Annu Rev Phytopathol 36, 41–58.[CrossRef]
    [Google Scholar]
  19. Jones, J. B., Bouzar, H., Stall, R. E., Almira, E. C., Roberts, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M. & Chun, J. ( 2000; ). Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. Int J Syst Evol Microbiol 50, 1211–1219.[CrossRef]
    [Google Scholar]
  20. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  21. Khodakaramian, G. & Swings, J. ( 2002; ). AFLP fingerprinting of the strains of Xanthomonas axonopodis inducing citrus canker disease in southern Iran. Phytopathol Z 150, 227–231.[CrossRef]
    [Google Scholar]
  22. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetic analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  23. Lawrence, J. G. ( 1999; ). Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2, 519–523.[CrossRef]
    [Google Scholar]
  24. Leyns, F., De Cleene, M., Swings, J. G. & De Ley, J. ( 1984; ). The host range of the genus Xanthomonas. Bot Rev 50, 308–356.[CrossRef]
    [Google Scholar]
  25. Li, W.-H., Wu, C.-I. & Luo, C.-C. ( 1985; ). A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2, 150–174.
    [Google Scholar]
  26. Louws, F. J., Fulbright, D. W., Stephens, C. T. & de Bruijn, F. J. ( 1994; ). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60, 2286–2295.
    [Google Scholar]
  27. Louws, F. J., Fulbright, D. W., Stephens, C. T. & de Bruijn, F. J. ( 1995; ). Differentiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathology 85, 528–536.[CrossRef]
    [Google Scholar]
  28. Louws, F. J., Rademaker, J. L. W. & de Bruijn, F. J. ( 1999; ). The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annu Rev Phytopathol 37, 81–125.[CrossRef]
    [Google Scholar]
  29. Mohammadi, M., Mirzaee, M. R. & Rahimian, H. ( 2001; ). Physiological and biochemical characteristics of Iranian strains of Xanthomonas axonopodis pv. citri, the causal agent of citrus bacterial canker disease. Phytopathol Z 149, 65–75.[CrossRef]
    [Google Scholar]
  30. Newman, E. B., D'Ari, R. & Lin, R. T. ( 1992; ). The leucine-Lrp regulon in E. coli: a global response in search of a raison d'être. Cell 68, 617–619.[CrossRef]
    [Google Scholar]
  31. Opgenorth, D. C., Smart, C. D., Louws, F. J., de Bruijn, F. J. & Kirkpatrick, B. C. ( 1996; ). Identification of Xanthomonas fragariae field isolates by rep-PCR genomic fingerprinting. Plant Dis 80, 868–873.[CrossRef]
    [Google Scholar]
  32. Platko, J. V. & Calvo, J. M. ( 1993; ). Mutations affecting the ability of Escherichia coli Lrp to bind DNA, activate transcription, or respond to leucine. J Bacteriol 175, 1110–1117.
    [Google Scholar]
  33. Pooler, M. R., Ritchie, D. F. & Hartung, J. S. ( 1996; ). Genetic relationships among strains of Xanthomonas fragariae based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen. Appl Environ Microbiol 62, 3121–3127.
    [Google Scholar]
  34. Rademaker, J. L. W., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. & de Bruijn, F. J. ( 2000; ). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50, 665–677.[CrossRef]
    [Google Scholar]
  35. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  36. Salanoubat, M., Genin, S., Artiguenave, F. & 25 other authors ( 2002; ). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497–502.[CrossRef]
    [Google Scholar]
  37. Sambrook, J. & Russell, D. ( 2000; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Schaad, N. W., Vidaver, A. K., Lacy, G. H., Rudolph, K. & Jones, J. B. ( 2000; ). Evaluation of proposed amended names of several pseudomonads and xanthomonads and recommendations. Phytopathology 90, 208–213.[CrossRef]
    [Google Scholar]
  39. Schoulties, C. L., Civerolo, E. L., Miller, J. W., Stall, R. E., Krass, C. J., Poe, S. R. & Ducharme, E. P. ( 1987; ). Citrus canker in Florida. Plant Dis 71, 388–395.[CrossRef]
    [Google Scholar]
  40. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  41. Sun, X., Stall, R. E., Cubero, J. & 7 other authors ( 2000; ). Detection of a unique isolate of citrus canker bacterium from Key lime in Wellington and Lake Worth, Florida. In Proceedings of the International Citrus Canker Research Workshop, Fort Pierce, FL, USA, 20–22 June 2000 (http://www.doacs.state.fl.us/∼pi/abstracts.pdf).
  42. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  43. Van den Mooter, M. & Swings, J. ( 1990; ). Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int J Syst Bacteriol 40, 348–369.[CrossRef]
    [Google Scholar]
  44. Vauterin, L. & Swings, J. ( 1997; ). Are classification and phytopathological diversity compatible in Xanthomonas? J Ind Microbiol Biotechnol 19, 77–82.[CrossRef]
    [Google Scholar]
  45. Vauterin, L., Yang, P., Hoste, B., Vancanneyt, M., Civerolo, E. L., Swings, J. & Kersters, K. ( 1991; ). Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins, fatty acid analysis, and DNA-DNA hybridization. Int J Syst Bacteriol 41, 535–542.[CrossRef]
    [Google Scholar]
  46. Vauterin, L., Hoste, B., Kersters, K. & Swings, J. ( 1995; ). Reclassification of Xanthomonas. Int J Syst Bacteriol 45, 472–489.[CrossRef]
    [Google Scholar]
  47. Vauterin, L., Rademaker, J. & Swings, J. ( 2000; ). Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology 90, 677–682.[CrossRef]
    [Google Scholar]
  48. Vernière, C., Hartung, J. S., Pruvost, O. P., Civerolo, E. L., Alvarez, A. M., Maestri, P. & Luisetti, J. ( 1998; ). Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Eur J Plant Pathol 104, 477–487.[CrossRef]
    [Google Scholar]
  49. Versalovic, J., Koeuth, T. & Lupski, J. R. ( 1991; ). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef]
    [Google Scholar]
  50. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  51. Weiller, G. F. ( 1998; ). Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol Biol Evol 15, 326–335.[CrossRef]
    [Google Scholar]
  52. Young, J. M., Bull, C. T., De Boer, S. H., Firrao, G., Gardan, L., Saddler, G. E., Stead, D. E. & Takikawa, Y. ( 2001; ). Classification, nomenclature, and plant pathogenic bacteria – a clarification. Phytopathology 91, 617–620.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02784-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02784-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error