1887

Abstract

As part of an undergraduate microbiology course, a yellow–orange pigmented, Gram-staining negative, rod-shaped, non-motile bacterial strain, designated CTM, was isolated from a creek in North-central Pennsylvania during the winter of 2006. The 16S rRNA gene sequence of the strain showed ~97 % similarity to that of PSD1-4 and JS6-6, while the protein-coding gene sequence of strain CTM showed <87 % similarity to those of its two closest relatives. Using a polyphasic approach, strain CTM was characterized and compared to these and other closely related species of the genus . Strain CTM was similar to other strains of the genus in that it contained MK-6 as its major respiratory quinone, produced flexirubin-type pigments, oxidase and catalase, hydrolysed DNA, gelatin and aesculin and contained the fatty acids iso-C, iso-Cω9, iso-C 3-OH and summed feature 3 (Cω6, Cω7 and/or iso-C 2-OH). Based on the results of this study, strain CTM represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CTM ( = ATCC BAA-1782  = CCUG 57707  = JCM 15960  = DSM 22249  = KCTC 23267).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027805-0
2011-09-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2162.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027805-0&mimeType=html&fmt=ahah

References

  1. Behrendt U. , Ulrich A. , Spröer C. , Schumann P. . ( 2007; ). Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. . Int J Syst Evol Microbiol 57:, 1881–1885. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernardet J.-F. , Hugo C. , Bruun B. . ( 2006; ). The genera Chryseobacterium and Elizabethkingia . . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 638–676. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . New York:: Springer;.
    [Google Scholar]
  4. Bruno W. J. , Socci N. D. , Halpern A. L. . ( 2000; ). Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. . Mol Biol Evol 17:, 189–197.[PubMed] [CrossRef]
    [Google Scholar]
  5. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cole J. R. , Chai B. , Farris R. J. , Wang Q. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Bandela A. M. , Cardenas E. , Garrity G. M. , Tiedje J. M. . ( 2007; ). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. . Nucleic Acids Res 35: Database issue D169–D172. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cole J. R. , Wang Q. , Cardenas E. , Fish J. , Chai B. , Farris R. J. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Marsh T. et al. ( 2009; ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: Database issue D141–D145. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  10. Hantsis-Zacharov E. , Shakéd T. , Senderovich Y. , Halpern M. . ( 2008; ). Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. . Int J Syst Evol Microbiol 58:, 2635–2639. [CrossRef] [PubMed]
    [Google Scholar]
  11. Herzog P. , Winkler I. , Wolking D. , Kämpfer P. , Lipski A. . ( 2008; ). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. . Int J Syst Evol Microbiol 58:, 26–33. [CrossRef] [PubMed]
    [Google Scholar]
  12. Huang X. , Madan A. . ( 1999; ). cap3: a DNA sequence assembly program. . Genome Res 9:, 868–877. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ilardi P. , Fernández J. , Avendaño-Herrera R. . ( 2009; ). Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. . Int J Syst Evol Microbiol 59:, 3001–3005. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kämpfer P. , Arun A. B. , Young C.-C. , Chen W.-M. , Sridhar K. R. , Rekha P. D. . ( 2010; ). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. . Int J Syst Evol Microbiol 60:, 1765–1769. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim K. K. , Lee K. C. , Oh H.-M. , Lee J. S. . ( 2008; ). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. . Int J Syst Evol Microbiol 58:, 533–537. [CrossRef] [PubMed]
    [Google Scholar]
  16. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19, 161–207. [CrossRef]
    [Google Scholar]
  17. Lane D. J. . ( 1991; ). 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . New York, NY:: John Wiley and Sons;.
    [Google Scholar]
  18. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Nei M. , Kumar S. . ( 2000; ). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  20. Newman J. D. . ( 2000; ). Molecular phylogeny in the undergraduate microbiology laboratory. . Focus on Microbiol Educ 6:, 3–4.
    [Google Scholar]
  21. Park M. S. , Jung S. R. , Lee K. H. , Lee M. S. , Do J. O. , Kim S. B. , Bae K. S. . ( 2006; ). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. . Int J Syst Evol Microbiol 56:, 433–438. [CrossRef] [PubMed]
    [Google Scholar]
  22. Park S. C. , Kim M. S. , Baik K. S. , Kim E. M. , Rhee M. S. , Seong C. N. . ( 2008; ). Chryseobacterium aquifrigidense sp. nov., isolated from a water-cooling system. . Int J Syst Evol Microbiol 58:, 607–611. [CrossRef] [PubMed]
    [Google Scholar]
  23. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note no. 101. Newark, DE: MIDI Inc.
  24. Shimomura K. , Kaji S. , Hiraishi A. . ( 2005; ). Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. . Int J Syst Evol Microbiol 55:, 1903–1906. [CrossRef] [PubMed]
    [Google Scholar]
  25. Stackebrandt E. , Ebers J. . ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  26. Suzuki M. , Nakagawa Y. , Harayama S. , Yamamoto S. . ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:, 1639–1652. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  28. van der Linde K. , Lim B. T. , Rondeel J. M. , Antonissen L. P. , de Jong G. M. . ( 1999; ). Improved bacteriological surveillance of haemodialysis fluids: a comparison between Tryptic soy agar and Reasoner’s 2A media. . Nephrol Dial Transplant 14:, 2433–2437. [CrossRef] [PubMed]
    [Google Scholar]
  29. Vandamme P. , Bernardet J.-F. , Segers P. , Kersters K. , Holmes B. . ( 1994; ). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:, 827–831. [CrossRef]
    [Google Scholar]
  30. Weon H. Y. , Kim B. Y. , Yoo S. H. , Kwon S. W. , Stackebrandt E. , Go S. J. . ( 2008; ). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. . Int J Syst Evol Microbiol 58:, 470–473. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027805-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027805-0
Loading

Data & Media loading...

vol. , part 9, pp. 2162 - 2166

Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic relationship between strain CTM and other species of the genus .

Neighbour-joining phylogenetic tree based on gene sequences showing the phylogenetic relationship between strain CTM and representative members of the family .

Complete GenIII (Biolog) test plate results of strain CTM and most closely related species.

Complete API 20 NE and API ZYM test strip results of strain CTM and most closely related species.

Supplementary Material [PDF](1.1MB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error