1887

Abstract

A novel, extremely thermophilic bacterium, designated strain 17S, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc, Japan. The cells were rods with no apparent motility, most of which were narrow in the middle in the exponential-growth phase and had several polar flagella at both ends. Growth was observed between 45 and 80 °C (optimum temperature, 70–75 °C; doubling time, 80 min) and between pH 5·0 and 7·0 (optimum pH, 5·4). The isolate was a strictly anaerobic chemolithoautotroph that was capable of using molecular hydrogen as its sole energy source and carbon dioxide as its sole carbon source. Elemental sulfur (S) was required for growth as an electron acceptor. The G+C content of the genomic DNA was 34·6 mol%. Phylogenetic analysis based on 16S rDNA sequences indicated that the isolate was related to ED11/3LLK and BSA, whilst it appeared to be a novel lineage prior to the divergence of these genera. This isolate could also be differentiated from both ED11/3LLK and BSA on the basis of physiological properties. The name gen. nov., sp. nov. is proposed for this isolate (type strain, 17S=JCM 11970=ATCC BAA-736).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02773-0
2003-11-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531947.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02773-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  4. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J. & Ouellette, B. F. F. ( 1998; ). GenBank. Nucleic Acids Res 26, 1–7.[CrossRef]
    [Google Scholar]
  5. Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W. & Stetter, K. O. ( 1997; ). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1, 14–21.[CrossRef]
    [Google Scholar]
  6. Burggraf, S., Jannasch, H. W., Nicolaus, B. & Stetter, K. O. ( 1990; ). Archaeoglobus profundus sp. nov., represents a new species within the sulfur-reducing Archaebacteria. Syst Appl Microbiol 13, 24–28.[CrossRef]
    [Google Scholar]
  7. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  8. Eder, W. & Huber, R. ( 2002; ). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6, 309–318.[CrossRef]
    [Google Scholar]
  9. Gillis, M., Vandamme, P., De Vos, P., Swings, J. & Kersters, K. ( 2001; ). Polyphasic taxonomy. In Bergey's Manual of Systematic Bacteriology, 2nd edn, pp. 43–48. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. London: Springer.
  10. Götz, D., Banta, A., Beveridge, T. J., Rushdi, A. I., Simoneit, B. R. T. & Reysenbach, A.-L. ( 2002; ). Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52, 1349–1359.[CrossRef]
    [Google Scholar]
  11. Harmsen, H. J. M., Prieur, D. & Jeanthon, C. ( 1997; ). Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol 63, 4061–4068.
    [Google Scholar]
  12. Huber, R., Kurr, M., Jannasch, H. W. & Stetter, K. O. ( 1989; ). A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C. Nature 342, 833–834.[CrossRef]
    [Google Scholar]
  13. Huber, H., Jannasch, H., Rachel, R., Fuchs, T. & Stetter, K. O. ( 1997; ). Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20, 374–380.[CrossRef]
    [Google Scholar]
  14. Huber, H., Burggraf, S., Mayer, T., Wyschkony, I., Rachel, R. & Stetter, K. O. ( 2000; ). Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50, 2093–2100.[CrossRef]
    [Google Scholar]
  15. Huber, H., Diller, S., Horn, C. & Rachel, R. ( 2002; ). Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52, 1859–1865.[CrossRef]
    [Google Scholar]
  16. Jeanthon, C., L'Haridon, S., Reysenbach, A. L., Vernet, M., Messner, P., Sleytr, U. B. & Prieur, D. ( 1998; ). Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48, 913–919.[CrossRef]
    [Google Scholar]
  17. Jeanthon, C., L'Haridon, S., Reysenbach, A.-L., Corre, E., Vernet, M., Messner, P., Sleytr, U. B. & Prieur, D. ( 1999a; ). Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49, 583–589.[CrossRef]
    [Google Scholar]
  18. Jeanthon, C., L'Haridon, S., Pradel, N. & Prieur, D. ( 1999b; ). Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int J Syst Bacteriol 49, 591–594.[CrossRef]
    [Google Scholar]
  19. Jones, W. J., Leigh, J. A., Mayer, F., Woese, C. R. & Wolfe, R. S. ( 1983; ). Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136, 254–261.[CrossRef]
    [Google Scholar]
  20. Jones, W. J., Stugard, C. E. & Jannasch, H. W. ( 1989; ). Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151, 314–318.[CrossRef]
    [Google Scholar]
  21. Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A.-L. & Lovley, D. R. ( 2002; ). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52, 719–728.[CrossRef]
    [Google Scholar]
  22. Kurr, M., Huber, R., König, H., Jannasch, H. W., Fricke, H., Trincone, A., Kristjansson, J. K. & Stetter, K. O. ( 1991; ). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156, 239–247.[CrossRef]
    [Google Scholar]
  23. Lane, D. J. ( 1985; ). 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–176. Edited by E. Stackbrandt & M. Goodfellow. New York: Wiley.
  24. L'Haridon, S., Cilia, V., Messner, P., Raguénès, G., Gambacorta, A., Sleytr, U. B., Prieur, D. & Jeanthon, C. ( 1998; ). Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48, 701–711.[CrossRef]
    [Google Scholar]
  25. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 9 other authors ( 2000; ). The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28, 173–174.[CrossRef]
    [Google Scholar]
  26. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  27. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  28. Nakagawa, S., Takai, K., Horikoshi, K. & Sako, Y. ( 2003; ). Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 863–869.[CrossRef]
    [Google Scholar]
  29. Pley, U., Schipka, J., Gambacorta, A., Jannasch, H. W., Fricke, H., Rachel, R. & Stetter, K. O. ( 1991; ). Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14, 245–253.[CrossRef]
    [Google Scholar]
  30. Reysenbach, A.-L., Banta, A. B., Boone, D. R., Cary, S. C. & Luther, G. W. ( 2000; ). Microbial essentials at hydrothermal vents. Nature 404, 835.[CrossRef]
    [Google Scholar]
  31. Sako, Y., Takai, K., Ishida, Y., Uchida, A. & Katayama, Y. ( 1996; ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46, 1099–1104.[CrossRef]
    [Google Scholar]
  32. Sako, Y., Nakagawa, S., Takai, K. & Horikoshi, K. ( 2003; ). Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 59–65.[CrossRef]
    [Google Scholar]
  33. Shanks, W. C., III ( 2001; ). Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In Stable Isotope Geochemistry (Reviews in Mineralogy and Geochemistry vol. 43), pp. 469–525. Edited by J. W. Valley & D. R. Cole. Washington, DC: Mineralogy Society of America.
  34. Takai, K. & Horikoshi, K. ( 1999; ). Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297.
    [Google Scholar]
  35. Takai, K. & Horikoshi, K. ( 2000; ). Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4, 9–17.[CrossRef]
    [Google Scholar]
  36. Takai, K., Inoue, A. & Horikoshi, K. ( 1999; ). Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11 000 m deep Mariana Trench. Int J Syst Bacteriol 49, 619–628.[CrossRef]
    [Google Scholar]
  37. Takai, K., Komatsu, T., Inagaki, F. & Horikoshi, K. ( 2001a; ). Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67, 3618–3629.[CrossRef]
    [Google Scholar]
  38. Takai, K., Komatsu, T. & Horikoshi, K. ( 2001b; ). Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51, 1425–1435.
    [Google Scholar]
  39. Takai, K., Inoue, A. & Horikoshi, K. ( 2002; ). Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52, 1089–1095.[CrossRef]
    [Google Scholar]
  40. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003a; ). Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53, 839–846.[CrossRef]
    [Google Scholar]
  41. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003b; ). Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53, 823–827.[CrossRef]
    [Google Scholar]
  42. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003c; ). Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  43. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  44. Van Dover, C. L., Humphris, S. E., Fornari, D. & 24 other authors ( 2001; ). Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818–823.[CrossRef]
    [Google Scholar]
  45. Von Damm, K. L. ( 1995; ). Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (Geophysical Monograph vol. 91), pp. 222–247. Edited by S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, R. E. Thomson & D. E. Hayes. Washington, DC: American Geophysical Union.
  46. Zhao, H., Wood, A. G., Widdel, F. & Bryant, M. P. ( 1988; ). An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch Microbiol 150, 178–183.[CrossRef]
    [Google Scholar]
  47. Zillig, W., Holz, I., Janekovic, D. & 7 other authors ( 1990; ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172, 3959–3965.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02773-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02773-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1947 – 1954

Effects of temperature, pH and NaCl concentration on the growth of strain 17S [PDF](127 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error