1887

Abstract

Two propionate-producing strains (Wd and Wf) that were isolated anaerobically from plant residue of irrigated rice-field soil in Japan were characterized phenotypically and phylogenetically. The growth rate of strain Wd was very slow in basal medium, but both growth and propionate production were stimulated significantly by the addition of cyanocobalamin. Strain Wf grew well in basal medium and produced substantial amounts of fermentation products, including propionate. Other phenotypic and phylogenetic characteristics of the two isolates were almost identical. Both were facultatively anaerobic, but much better growth was observed under anaerobic conditions. Cells were Gram-positive, non-motile, non-spore-forming and pleomorphic rods with irregular V- or crescent-shaped cell arrangements. Fermentation products from glucose in the presence of excess cyanocobalamin were acetate, lactate, a small amount of succinate and CO, in addition to propionate. Both oxidase and catalase activities were negative. The strains possessed -diaminopimelic acid in their peptidoglycan and their major cellular fatty acids were C, anteiso-C and C. The isolates had high genomic DNA G+C contents (68·7 and 67·4 mol%, respectively). Menaquinones MK-9(H) and MK-10(H) were the predominant respiratory quinones. Phylogenetic analysis based on 16S rDNA sequences placed both strains in the , with as their closest relative (sequence similarity values of 95·8 and 95·7 %, respectively). and were also related closely to the isolates. As their morphological, physiological and chemotaxonomic characteristics were distinctly different from those of any related species, gen. nov., sp. nov. is proposed to accommodate these strains. The type strain of the novel species is Wd (=JCM 11933=DSM 15597).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02764-0
2003-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531991.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02764-0&mimeType=html&fmt=ahah

References

  1. Akasaka, H., Izawa, T., Ueki, K. & Ueki, A. ( 2003; ). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43, 149–161.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Asakawa, S., Akagawa-Matsushita, M., Morii, H., Koga, Y. & Hayano, K. ( 1995; ). Characterization of Methanosarcina mazeii TMA isolated from a paddy field soil. Curr Microbiol 31, 34–38.[CrossRef]
    [Google Scholar]
  4. Chin, K.-J. & Janssen, P. H. ( 2002; ). Propionate formation by Opitutus terrae in pure culture and in mixed culture with a hydrogenotrophic methanogen and implications for carbon fluxes in anoxic rice paddy soil. Appl Environ Microbiol 68, 2089–2092.[CrossRef]
    [Google Scholar]
  5. Chin, K.-J., Rainey, F. A., Janssen, P. H. & Conrad, R. ( 1998; ). Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil. Syst Appl Microbiol 21, 185–200.[CrossRef]
    [Google Scholar]
  6. Chin, K.-J., Hahn, D., Hengstmann, U., Liesack, W. & Janssen, P. H. ( 1999; ). Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl Environ Microbiol 65, 5042–5049.
    [Google Scholar]
  7. Chin, K.-J., Liesack, W. & Janssen, P. H. ( 2001; ). Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int J Syst Evol Microbiol 51, 1965–1968.[CrossRef]
    [Google Scholar]
  8. Cummins, C. S. & Johnson, J. L. ( 1986; ). Genus I. Propionibacterium Orla-Jensen 1909, 337. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1346–1353. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Willkins.
  9. Dolfing, J. ( 1988; ). Acetogenesis. In Biology of Anaerobic Microorganisms, pp. 417–468. Edited by A. J. B. Zehnder. New York: Wiley.
  10. Garrity, G. M. & Holt, J. G. ( 2001; ). The road map to the Manual. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 119–166. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  11. Glissmann, K. & Conrad, R. ( 2000; ). Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 31, 117–126.[CrossRef]
    [Google Scholar]
  12. Großkopf, R., Stubner, S. & Liesack, W. ( 1998; ). Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64, 4983–4989.
    [Google Scholar]
  13. Hanada, S., Takaichi, S., Matsuura, K. & Nakamura, K. ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52, 187–193.
    [Google Scholar]
  14. Hattori, C., Ueki, A., Seto, T. & Ueki, K. ( 2001; ). Seasonal variations in temperature dependence of methane production in paddy soil. Microb Environ 16, 227–233.[CrossRef]
    [Google Scholar]
  15. Hattori, C., Ueki, A., Fujii, H., Egashira, H. & Ueki, K. ( 2002; ). Factors affecting seasonal and vertical variations in the methanogenic activity in paddy soil determined by the addition of methanogenic substrates. Soil Sci Plant Nutr 48, 315–324.[CrossRef]
    [Google Scholar]
  16. Henckel, T., Friedrich, M. & Conrad, R. ( 1999; ). Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65, 1980–1990.
    [Google Scholar]
  17. Hengstmann, U., Chin, K.-J., Janssen, P. H. & Liesack, W. ( 1999; ). Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 65, 5050–5058.
    [Google Scholar]
  18. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  19. Hungate, R. E. ( 1966; ). The Rumen and its Microbes. New York: Academic Press.
  20. Janssen, P. H., Schuhmann, A., Mörschel, E. & Rainey, F. A. ( 1997; ). Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63, 1382–1388.
    [Google Scholar]
  21. Kaku, N., Ueki, A., Fujii, H. & Ueki, K. ( 2000; ). Methanogenic activities on rice roots and plant residue and their contribution to methanogenesis in wetland rice field soil. Soil Biol Biochem 32, 2001–2010.[CrossRef]
    [Google Scholar]
  22. Kamagata, Y. & Mikami, E. ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef]
    [Google Scholar]
  23. Khalil, M. A. K. ( 2000; ). Atmospheric Methane: its Role in the Global Environment. Berlin: Springer.
  24. Komagata, K. & Suzuki, K. ( 1987; ). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–203.
    [Google Scholar]
  25. Krone, U. E., Thauer, R. K. & Hogenkamp, H. P. C. ( 1989; ). Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28, 4908–4914.[CrossRef]
    [Google Scholar]
  26. Kushida, H. ( 1980; ). An improved embedding method using ERL 4206 and Quetol 653. J Electron Microsc 29, 193–194.
    [Google Scholar]
  27. Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Schumann, P., Burghardt, J., Webb, R. I., Soddell, J. A. & Rees, G. N. ( 1999; ). Friedmanniella spumicola sp. nov. and Friedmanniella capsulata sp. nov. from activated sludge foam: Gram-positive cocci that grow in aggregates of repeating groups of cocci. Int J Syst Bacteriol 49, 1667–1680.[CrossRef]
    [Google Scholar]
  28. Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K. & Kamagata, Y. ( 1995; ). Microlunatus phosphovorus gen. nov., sp. nov., a new Gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45, 17–22.[CrossRef]
    [Google Scholar]
  29. Pitcher, D. G. & Collins, M. D. ( 1991; ). Phylogenetic analysis of some ll-diaminopimelic acid-containing coryneform bacteria from human skin: description of Propionibacterium innocuum sp. nov. FEMS Microbiol Lett 84, 295–300.
    [Google Scholar]
  30. Rajagopal, B. S., Belay, N. & Daniels, L. ( 1988; ). Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53, 153–158.[CrossRef]
    [Google Scholar]
  31. Rosencrantz, D., Rainey, F. A. & Janssen, P. H. ( 1999; ). Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 65, 3526–3533.
    [Google Scholar]
  32. Roth, J. R., Lawrence, J. G. & Bobik, T. A. ( 1996; ). Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50, 137–181.[CrossRef]
    [Google Scholar]
  33. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  34. Satoh, A., Watanabe, M., Ueki, A. & Ueki, K. ( 2002; ). Physiological properties and phylogenetic affiliations of anaerobic bacteria isolated from roots of rice plants cultivated on a paddy field. Anaerobe 8, 233–246.[CrossRef]
    [Google Scholar]
  35. Schumann, P., Prauser, H., Rainey, F. A., Stackebrandt, E. & Hirsch, P. ( 1997; ). Friedmanniella antarctica gen. nov., sp. nov., an ll-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47, 278–283.[CrossRef]
    [Google Scholar]
  36. Seiler, W., Holzapfel-Pschorn, A., Conrad, R. & Scharffe, D. ( 1984; ). Methane emission from rice paddies. J Atmos Chem 1, 241–268.
    [Google Scholar]
  37. Shintani, T., Liu, W.-T., Hanada, S., Kamagata, Y., Miyaoka, S., Suzuki, T. & Nakamura, K. ( 2000; ). Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50, 201–207.[CrossRef]
    [Google Scholar]
  38. Strobel, H. J. ( 1992; ). Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl Environ Microbiol 58, 2331–2333.
    [Google Scholar]
  39. Stupperich, E., Eisinger, H.-J. & Schurr, S. ( 1990; ). Corrinoids in anaerobic bacteria. FEMS Microbiol Rev 87, 355–360.[CrossRef]
    [Google Scholar]
  40. Takai, Y. ( 1970; ). The mechanism of methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 16, 238–244.[CrossRef]
    [Google Scholar]
  41. Tamaoka, J., Katayama-Fujimura, Y. & Kuraishi, H. ( 1983; ). Analysis of bacterial menaquinone mixtures by high performance liquid choromatography. J Appl Bacteriol 54, 31–36.[CrossRef]
    [Google Scholar]
  42. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  43. Ueki, A. & Suto, T. ( 1979; ). Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25, 185–196.[CrossRef]
    [Google Scholar]
  44. Ueki, A., Matsuda, K. & Ohtsuki, C. ( 1986; ). Sulfate-reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32, 111–123.[CrossRef]
    [Google Scholar]
  45. Ueki, A., Nishida, S., Kumakura, M., Kaku, N., Kainuma, Y., Hattori, C., Fujii, H. & Ueki, K. ( 1999; ). Effects of organic matter application, temperature and sunshine duration on seasonal and annual variations of methanogenic activity in wetland rice field soil. Soil Sci Plant Nutr 45, 811–823.[CrossRef]
    [Google Scholar]
  46. Ueki, A., Kainuma, Y., Fujii, H. & Ueki, K. ( 2000; ). Seasonal variations in vertical distribution of methanogenic activity and Fe(II) content and relationship between them in wetland rice field soil. Soil Sci Plant Nutr 46, 401–415.
    [Google Scholar]
  47. von Wintzingerode, F., Selent, B., Hegemann, W. & Göbel, U. B. ( 1999; ). Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65, 283–286.
    [Google Scholar]
  48. Wassmann, R., Neue, H.-U., Lantin, R. S., Buendia, L. V. & Rennenberg, H. ( 2000a; ). Characterization of methane emissions from rice fields in Asia. I. Comparison among field sites in five countries. Nutr Cycl Agroecosyst 58, 1–12.[CrossRef]
    [Google Scholar]
  49. Wassmann, R., Neue, H.-U., Lantin, R. S., Makarim, K., Chareonsilp, N., Buendia, L. V. & Rennenberg, H. ( 2000b; ). Characterization of methane emissions from rice fields in Asia. II. Differences among irrigated, rainfed, and deepwater rice. Nutr Cycl Agroecosyst 58, 13–22.[CrossRef]
    [Google Scholar]
  50. Watanabe, A., Satoh, Y. & Kimura, M. ( 1995; ). Estimation of the increase in CH4 emission from paddy soils by rice straw application. Plant Soil 173, 225–231.[CrossRef]
    [Google Scholar]
  51. White, R. H. & Zhou, D. ( 1993; ). Biosynthesis of the coenzymes in methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry & Genetics, pp. 409–444. Edited by J. G. Ferry. New York: Chapman & Hall.
  52. Wind, T., Stubner, S. & Conrad, R. ( 1999; ). Sulfate-reducing bacteria in rice field soil and on rice roots. Syst Appl Microbiol 22, 269–279.[CrossRef]
    [Google Scholar]
  53. Yagi, K. & Minami, K. ( 1990; ). Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci Plant Nutr 36, 599–610.[CrossRef]
    [Google Scholar]
  54. Yokota, A., Tamura, T., Takeuchi, M., Weiss, N. & Stackebrandt, E. ( 1994; ). Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol 44, 579–582.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02764-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02764-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1991 – 1998

Cell morphologies of strains Wd (a, b) and Wf (c, d). Phase-contrast photomicrographs (a, c) of cells grown anaerobically on agar slants of PY4SR; bars, 10 µm. Transmission electron photomicrographs (b, d) of cells grown in PYG liquid medium in the presence of 50 mg cobalamin l under anaerobic conditions; bars, 0.5 µm.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error