1887

Abstract

A psychrotolerant, Gram-stain-positive, yellow-pigmented, aerobic rod, designated SK1, was isolated from a soil sample collected from Store Koldewey, north-east Greenland. Cells were catalase- and methyl red-positive, produced HS and produced acid from glucose, mannitol and salicin. Strain SK1 was able to grow between −6 and 28 °C, with an optimum at 20 °C. The isolate contained 2,4-diaminobutyrate, glycine, alanine and glutamic acid in the cell wall and the major menaquinones were MK-10 and MK-11. Identified polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C (53.5 %), anteiso-C (17.0 %) and C (12.1 %). The genomic DNA G+C content was 67.8 mol%. Strain SK1 showed the highest 16S rRNA gene sequence similarity with 0549 (97.6 %) and RuGl7 (96.8 %). Considering morphological, physiological, biochemical and chemotaxonomic characters and phylogenetic analysis, strain SK1 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is SK1 ( = DSM 22823  = NCCB 100316).

Funding
This study was supported by the:
  • , Deutsche Forschungsgemeinschaft (DFG) , (Award WA 1554/4)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.027128-0
2011-08-01
2020-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1849.html?itemId=/content/journal/ijsem/10.1099/ijs.0.027128-0&mimeType=html&fmt=ahah

References

  1. Dastager S. G., Lee J.-C., Ju Y.-J., Park D.-J., Kim C.-J. 2008; Cryobacterium mesophilum sp. nov., a novel mesophilic bacterium. Int J Syst Evol Microbiol 58:1241–1244 [CrossRef][PubMed]
    [Google Scholar]
  2. Dojka M. A., Hugenholtz P., Haack S. K., Pace N. R. 1998; Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877[PubMed]
    [Google Scholar]
  3. DSMZ 2001; Key to murein (peptidoglycan) types. Braunschweig: DSMZ: http://www.dsmz.de/microorganisms/main.php?content_id=35
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  8. Hoaki T., Nishijima M., Kato M., Adachi K., Mizobuchi S., Hanzawa N., Maruyama T. 1994; Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl Environ Microbiol 60:2898–2904[PubMed]
    [Google Scholar]
  9. Hu H.-Y., Fujie K., Urano K. 1999; Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J Biosci Bioeng 87:378–382 [CrossRef][PubMed]
    [Google Scholar]
  10. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  11. Inoue K., Komagata K. 1976; Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J Gen Appl Microbiol 22:165–176 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kovács N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703 [CrossRef][PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  15. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160[PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  18. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  19. Ravenschlag K., Sahm K., Pernthaler J., Amann R. 1999; High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989[PubMed]
    [Google Scholar]
  20. Reddy G. S. N., Pradhan S., Manorama R., Shivaji S. 2010; Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. Int J Syst Evol Microbiol 60:866–870 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Schleifer K. H., Kandler O. 1972; Peptidoglycan type of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  23. Schröder H. ( 1991; Mikrobiologisches Praktikum, 5th edn. Berlin: Volk und Wissen Verlag (in German).
  24. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 4:152–155
    [Google Scholar]
  25. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. 1997; Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate ‘Curtobacterium psychrophilum’ Inoue and Komagata 1976. Int J Syst Bacteriol 47:474–478 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhang D.-C., Wang H.-X., Cui H.-L., Yang Y., Liu H.-C., Dong X.-Z., Zhou P.-J. 2007; Cryobacterium psychrotolerans sp. nov., a novel psychrotolerant bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 57:866–869 [CrossRef][PubMed]
    [Google Scholar]
  27. Zink K.-G., Mangelsdorf K. 2004; Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. Anal Bioanal Chem 380:798–812 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.027128-0
Loading
/content/journal/ijsem/10.1099/ijs.0.027128-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error