1887

Abstract

Previously, 22 aerobic Gram-negative bacteria were isolated from biofilms growing on granules of the synthetic polyester poly(-caprolactone); the granules were used as a fixed bed in a denitrification reactor. All the strains showed similar fatty acid profiles. The 16S rRNA gene sequences of five strains were phylogenetically related to spp. Repetitive extragenic palindromic DNA-PCR (REP-PCR) fingerprinting revealed four groups, and DNA hybridizations between representative strains showed that the strains belonged to two new species within the genus , for which the names (type strain LMG 21737=DSM 15424) and (type strain LMG 21746=DSM 15422) are proposed. Both species are able to grow at low temperatures, but not at 50 °C, and are non-haemolytic. Both species can be differentiated by several other phenotypic features from earlier described species of the genus . Cell extracts contain mainly branched fatty acids, with C iso, C iso 9, C iso 3OH and C iso as main constituents. The G+C content of the DNA of the novel species is between 67·6 and 68·7 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02684-0
2003-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531961.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02684-0&mimeType=html&fmt=ahah

References

  1. Alves, M. P., Rainey, F. A., Nobre, M. F. & da Costa, M. S. ( 2003; ). Thermomonas hydrothermalis sp. nov., a new slightly thermophilic γ-proteobacterium isolated from a hot spring in central Portugal. Syst Appl Microbiol 26, 70–75.[CrossRef]
    [Google Scholar]
  2. Boley, A., Müller, W.-R. & Haider, G. ( 2000; ). Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquac Eng 22, 75–85.[CrossRef]
    [Google Scholar]
  3. Boley, A., Mergaert, J., Müller, C., Lebrenz, H., Cnockaert, M. C., Müller, W. R. & Swings, J. ( 2003; ). Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly-ε-caprolactone (PCL). Acta Hydrochim Hydrobiol 31, 1–9.
    [Google Scholar]
  4. Buchholz-Cleven, B. E., Rattunde, B. & Straub, K. L. ( 1997; ). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20, 301–309.[CrossRef]
    [Google Scholar]
  5. Busse, H.-J., Kämpfer, P., Moore, E. R. B. & 7 other authors ( 2002; ). Thermomonas haemolytica gen. nov., sp. nov., a γ-proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52, 473–483.
    [Google Scholar]
  6. Heimbrook, M. E., Wang, W. L. & Campbell, G. ( 1989; ). Staining bacterial flagella easily. J Clin Microbiol 27, 2612–2615.
    [Google Scholar]
  7. Logan, N. A., Lebbe, L., Hoste, B. & 7 other authors ( 2000; ). Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50, 1741–1753.
    [Google Scholar]
  8. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  9. Mergaert, J. & Swings, J. ( 1996; ). Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J Ind Microbiol 17, 463–469.[CrossRef]
    [Google Scholar]
  10. Mergaert, J., Verdonck, L. & Kersters, K. ( 1993; ). Transfer of Erwinia ananas (synonym, Erwinia uredovora) and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb. nov. and Pantoea stewartii (Smith 1898) comb. nov., respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int J Syst Bacteriol 43, 162–173.[CrossRef]
    [Google Scholar]
  11. Mergaert, J., Ruffieux, K., Bourban, C., Storms, V., Wagemans, W., Wintermantel, E. & Swings, J. ( 2000; ). In vitro biodegradation of polyester-based plastic materials by selected bacterial cultures. J Polym Environ 8, 17–27.[CrossRef]
    [Google Scholar]
  12. Mergaert, J., Verhelst, A., Cnockaert, M. C., Tan, T.-L. & Swings, J. ( 2001a; ). Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol 24, 98–107.[CrossRef]
    [Google Scholar]
  13. Mergaert, J., Boley, A., Cnockaert, M. C., Müller, W.-R. & Swings, J. ( 2001b; ). Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol 24, 303–310.[CrossRef]
    [Google Scholar]
  14. Mergaert, J., Cnockaert, M. C. & Swings, J. ( 2002; ). Fulvimonas soli gen. nov., sp. nov., a γ-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 52, 1285–1289.[CrossRef]
    [Google Scholar]
  15. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  16. Müller, W.-R., Heinemann, A., Schäfer, C., Wurmthaler, J. & Reutter, T. ( 1992; ). Aspects of PHA (poly-β-hydroxy-butyric-acid) as H-donator for denitrification in water treatment processes. Water Supply 1992, 79–90.
    [Google Scholar]
  17. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  18. Rademaker, J. L. W. & de Bruijn, F. J. ( 1997; ). Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In DNA Markers: Protocols, Applications and Overviews, pp. 151–171. Edited by G. Caetano-Anollés & P. M. Gresshoff. New York: Wiley.
  19. Rademaker, J. L. W., Hoste, B., Louws, F. J., Kersters, K., Swings, J., Vauterin, L., Vauterin, P. & de Bruijn, F. J. ( 2000; ). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50, 665–677.[CrossRef]
    [Google Scholar]
  20. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  21. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  22. Versalovic, J., Koeuth, T. & Lupski, J. R. ( 1991; ). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef]
    [Google Scholar]
  23. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  24. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., De Vos, P. & Gillis, M. ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02684-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02684-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error