1887

Abstract

A novel Gram-staining-positive, moderately halophilic, facultatively alkaliphilic, non-motile, catalase-positive, oxidase-negative, endospore-forming, facultatively anaerobic rod, designated JSM 076093, was isolated from a sea urchin () collected from Naozhou Island in the South China Sea. Growth occurred with 0.5–25 % (w/v) NaCl (optimum 5–8 %) and at pH 6.0–10.5 (optimum pH 8.0) and 5–40 °C (optimum 30–35 °C). -Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 and the polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and one unidentified phospholipid. The major cellular fatty acids (>10 % of the total) were anteiso-C, anteiso-C, iso-C and iso-C. The genomic DNA G+C content was 38.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 076093 belonged to the genus and was related most closely to SW-72 (99.1 % 16S rRNA gene sequence similarity) and KMM 3737 (97.3 %). The combination of results from the phylogenetic analysis, DNA–DNA hybridization and phenotypic and chemotaxonomic characterization supported the conclusion that strain JSM 076093 represents a novel species of the genus , for which the name sp. nov. is proposed, with JSM 076093 ( = DSM 23007 = KCTC 13710) as the type strain.

Funding
This study was supported by the:
  • , National Basic Research Program of China , (Award 2010CB833800)
  • , National Natural Science Foundation of China , (Award 30970008 and 30970007)
  • , state-level public welfare scientific research institutes for basic R&D special fund , (Award IMBF200915)
  • , International Cooperation Research Program of Yunnan Province , (Award 2009AC017)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026732-0
2011-12-01
2020-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2950.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026732-0&mimeType=html&fmt=ahah

References

  1. Aizawa T., Urai M., Iwabuchi N., Nakajima M., Sunairi M. 2010; Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 60:61–66 [CrossRef][PubMed]
    [Google Scholar]
  2. Arahal D. R., Ventosa A. 2002; Moderately halophilic and halotolerant species of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives pp. 83–99 Edited by Berkeley R. C. W., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell; [CrossRef]
    [Google Scholar]
  3. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus as revealed by comparative analysis of small-subunit ribosomal-RNA sequences. Lett Appl Microbiol 13:202–206 [CrossRef]
    [Google Scholar]
  4. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  5. Baik K. S., Lim C. H., Park S. C., Kim E. M., Rhee M. S., Seong C. N. 2010; Bacillus rigui sp. nov., isolated from wetland fresh water. Int J Syst Evol Microbiol 60:2204–2209 [CrossRef][PubMed]
    [Google Scholar]
  6. Balcázar J. L., Pintado J., Planas M. 2010; Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol 60:892–895 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Y.-G., Cui X.-L., Pukall R., Li H.-M., Yang Y.-L., Xu L.-H., Wen M.-L., Peng Q., Jiang C.-L. 2007; Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Y.-G., Zhang Y.-Q., Shi J.-X., Xiao H.-D., Tang S.-K., Liu Z.-X., Huang K., Cui X.-L., Li W.-J. 2009a; Jeotgalicoccus marinus sp. nov., a marine bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59:1625–1629 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen Y.-G., Zhang Y.-Q., Xiao H.-D., Liu Z.-X., Yi L.-B., Shi J.-X., Zhi X.-Y., Cui X.-L., Li W.-J. 2009b; Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59:1635–1639 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen Y.-G., Zhang Y.-Q., Wang Y.-X., Liu Z.-X., Klenk H.-P., Xiao H.-D., Tang S.-K., Cui X.-L., Li W.-J. 2009c; Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. Int J Syst Evol Microbiol 59:3035–3039 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen Y.-G., Zhang Y.-Q., Yi L.-B., Li Z.-Y., Wang Y.-X., Xiao H.-D., Chen Q.-H., Cui X.-L., Li W.-J. 2010; Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus . Int J Syst Evol Microbiol 60:560–565 [CrossRef][PubMed]
    [Google Scholar]
  12. Cho S.-L., Jung M. Y., Park M.-H., Kim W. 2010; Bacillus chungangensis sp. nov., a halophilic species isolated from sea sand. Int J Syst Evol Microbiol 60:1349–1352 [CrossRef][PubMed]
    [Google Scholar]
  13. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  14. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  15. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  16. Cui X.-L., Mao P.-H., Zeng M., Li W.-J., Zhang L.-P., Xu L.-H., Jiang C.-L. 2001; Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae . Int J Syst Evol Microbiol 51:357–363[PubMed]
    [Google Scholar]
  17. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  18. Denizci A. A., Kazan D., Erarslan A. 2010; Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 60:1590–1594 [CrossRef][PubMed]
    [Google Scholar]
  19. Euzéby J. P. 2010; List of bacterial names with standing in nomenclature – genus Bacillus: a folder available on the Internet. [Last full update 29 December 2010]. http://www.bacterio.cict.fr/b/bacillus.html
  20. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  22. Felsenstein J. 2002; phylip (phylogeny inference package) version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA
  23. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  24. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  25. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  26. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  27. Horikoshi K. 1999; Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750[PubMed]
    [Google Scholar]
  28. Huang K., Zhang L., Liu Z., Chen Q., Peng Q., Li W., Cui X., Chen Y. 2009; [Diversity of culturable bacteria associated with the sea urchin Hemicentrotus pulcherrimus from Naozhou Island]. Wei Sheng Wu Xue Bao 49:1424–1429 (in Chinese) [PubMed]
    [Google Scholar]
  29. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  30. Ivanova E. P., Alexeeva Y. A., Zhukova N. V., Gorshkova N. M., Buljan V., Nicolau D. V., Mikhailov V. V., Christen R. 2004; Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens . Syst Appl Microbiol 27:301–307 [CrossRef][PubMed]
    [Google Scholar]
  31. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  32. Kämpfer P. 1994; Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98 [CrossRef]
    [Google Scholar]
  33. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  34. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  35. Krulwich T. A., Hicks D. B., Swartz T. H., Ito M. 2007; Bioenergetic adaptations that support alkaliphily. In Physiology and Biochemistry of Extremophiles pp. 311–329 Edited by Gerday C., Glansdorff N. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  37. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. other authors 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  38. Madhaiyan M., Poonguzhali S., Kwon S.-W., Sa T.-M. 2010; Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 60:2490–2495 [CrossRef][PubMed]
    [Google Scholar]
  39. Margesin R., Schinner F. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83 [CrossRef][PubMed]
    [Google Scholar]
  40. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  41. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  42. Nielsen P., Rainey F. A., Outtrup H., Priest F. A., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus . FEMS Microbiol Lett 117:61–65 [CrossRef]
    [Google Scholar]
  43. Nogi Y., Takami H., Horikoshi K. 2005; Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315 [CrossRef][PubMed]
    [Google Scholar]
  44. Pappa A., Sánchez-Porro C., Lazoura P., Kallimanis A., Perisynakis A., Ventosa A., Drainas C., Koukkou A. I. 2010; Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 60:1432–1436 [CrossRef][PubMed]
    [Google Scholar]
  45. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  46. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  47. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  49. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp. 152–189 Edited by Goodfellow M., O’Donnell A. G. London: Academic Press;
    [Google Scholar]
  50. Sumpavapol P., Tongyonk L., Tanasupawat S., Chokesajjawatee N., Luxananil P., Visessanguan W. 2010; Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand. Int J Syst Evol Microbiol 60:2364–2370 [CrossRef][PubMed]
    [Google Scholar]
  51. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  52. Vaishampayan P., Probst A., Krishnamurthi S., Ghosh S., Osman S., McDowall A., Ruckmani A., Mayilraj S., Venkateswaran K. 2010; Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. Int J Syst Evol Microbiol 60:1031–1037 [CrossRef][PubMed]
    [Google Scholar]
  53. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  54. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  55. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  56. Xiao H.-D., Chen Y.-G., Liu Z.-X., Huang K., Li W.-J., Cui X.-L., Zhang L., Yi L.-B. 2009; [Phylogenetic diversity of cultivable bacteria associated with a sea anemone from coast of the Naozhou island in Zhanjiang, China]. Wei Sheng Wu Xue Bao 49:246–250 (in Chinese) [PubMed]
    [Google Scholar]
  57. Yoon J.-H., Kim I.-G., Kang K. H., Oh T.-K., Park Y.-H. 2004; Bacillus hwajinpoensis sp. nov. and an unnamed Bacillus genomospecies, novel members of Bacillus rRNA group 6 isolated from sea water of the East Sea and the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:803–808 [CrossRef][PubMed]
    [Google Scholar]
  58. Zhang J., Wang J., Fang C., Song F., Xin Y., Qu L., Ding K. 2010; Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 60:2924–2929 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026732-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026732-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error