1887

Abstract

A bacterial strain designated KTW-12 was isolated from a reef-building coral in Kenting, Taiwan, and was characterized using a polyphasic taxonomic approach. Strain KTW-12 was Gram-negative, semi-transparent, slightly curved rod-shaped, and non-motile. Growth occurred at 15–35 °C (optimum, 30 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0), and with 0.5–6.0 % NaCl (optimum, 2 %). The major cellular fatty acids were summed feature 3 (Cω7 and/or Cω6), C and C. The DNA G+C content was 47.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain KTW-12 was most closely related to MSSRF30, with 94.8 % gene sequence similarity. Further multilocus sequence analysis using , and genes also revealed low levels of sequence similarity (74.6–85.0 %) with all species of the genus with validly published names. A multigene phylogenetic tree using concatenated sequences of the four genes (16S rRNA, , and ) elucidated that strain KTW-12 occupied a distinct phylogenetic position, forming a long branch that was not clustered with any other known species of the genus . Strain KTW-12 differed from MSSRF30 in the ability to reduce nitrate to nitrite, hydrolysis of chitin, fermentation of sorbitol and production of arginine dihydrolase, valine arylamidase, cystine arylamidase and -acetyl-β-glucosaminidase. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain KTW-12 should be classified as representing a novel species, for which the name sp. nov. is proposed. The type strain is KTW-12 ( = BCRC 80105  = LMG 25357).

Funding
This study was supported by the:
  • Academia Sinica, Taipei, Taiwan, Republic of China (Award 20082010)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026666-0
2011-09-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2180.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026666-0&mimeType=html&fmt=ahah

References

  1. Ball R. J., Sellers W. 1966; Improved motility medium.. Appl Microbiol 14:670–673 [View Article][PubMed]
    [Google Scholar]
  2. Baumann P., Baumann L. 1984; Genus II. Photobacterium Beijerinck 1889, 401AL . In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 539–545 Edited by Krieg N. R., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  3. Baumann P., Schubert R. H. W. 1984; Family II. Vibrionaceae Véron 1965, 5245AL . In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 516–517 Edited by Krieg N. R., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  4. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio Pacine 1854. In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 518–538 Edited by Krieg N. R., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  5. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  6. Brown B. E., Bythell J. C. 2005; Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309 [View Article]
    [Google Scholar]
  7. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  8. Chiou S.-F., Kuo J., Wong T.-Y., Fan T.-Y., Tew K. S., Liu J.-K. 2010; Analysis of the coral associated bacterial community structures in healthy and diseased corals from off-shore of southern Taiwan. J Environ Sci Health B 45:408–415 [View Article][PubMed]
    [Google Scholar]
  9. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  10. Farmer J. J., Janda J. M., Brenner F. W., Cameron D. N., Birkhead K. M. 2005; Genus I. Vibrio Pacini 1854, 411AL . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2B pp. 494–546 Edited by Brenner D. J., Krieg N. R., Staley J. T. Baltimore: Williams & Wilkins;
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1993; PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.;
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  15. Hong M.-J., Yu Y.-T., Chen C. A., Chiang P.-W., Tang S.-L. 2009; Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. Appl Environ Microbiol 75:7797–7806 [View Article][PubMed]
    [Google Scholar]
  16. Hosoya S., Adachi K., Kasai H. 2009; Thalassomonas actiniarum sp. nov. and Thalassomonas haliotis sp. nov., isolated from marine animals. Int J Syst Evol Microbiol 59:686–690 [View Article][PubMed]
    [Google Scholar]
  17. Hsu S. C., Lockwood J. L. 1975; Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426[PubMed]
    [Google Scholar]
  18. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  19. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–12 [View Article]
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  21. Kvennefors E. C. E., Sampayo E., Ridgway T., Barnes A. C., Hoegh-Guldberg O. 2010; Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates. PLoS ONE 5:e10401 [View Article][PubMed]
    [Google Scholar]
  22. MacFaddin J. F. 2000 Biochemical Tests for the Identification of Medical Bacteria, 3rd edn. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  23. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [View Article][PubMed]
    [Google Scholar]
  24. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1996; Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 46:817–821 [View Article][PubMed]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  26. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  28. Rameshkumar N., Fukui Y., Sawabe T., Nair S. 2008; Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 58:1608–1615[PubMed] [CrossRef]
    [Google Scholar]
  29. Rosenberg E., Koren O., Reshef L., Efrony R., Zilber-Rosenberg I. 2007; The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362 [View Article][PubMed]
    [Google Scholar]
  30. Rypien K. L., Ward J. R., Azam F. 2010; Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39 [View Article][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Sampayo E. M., Ridgway T., Bongaerts P., Hoegh-Guldberg O. 2008; Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci U S A 105:10444–10449 [View Article][PubMed]
    [Google Scholar]
  33. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  34. Sawabe T., Kita-Tsukamoto K., Thompson F. L. 2007; Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189:7932–7936 [View Article][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  36. Thompson F. L., Hoste B., Thompson C. C., Goris J., Gomez-Gil B., Huys L., De Vos P., Swings J. 2002; Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae . Int J Syst Evol Microbiol 52:2015–2022 [View Article][PubMed]
    [Google Scholar]
  37. Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. 2003; Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 53:1615–1617 [View Article][PubMed]
    [Google Scholar]
  38. Thompson F. L., Iida T., Swings J. 2004; Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431 [View Article][PubMed]
    [Google Scholar]
  39. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115 [View Article][PubMed]
    [Google Scholar]
  40. Urbanczyk H., Ast J. C., Higgins M. J., Carson J., Dunlap P. V. 2007; Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov.. Int J Syst Evol Microbiol 57:2823–2829 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026666-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026666-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error